論文の概要: Ordre public exceptions for algorithmic surveillance patents
- arxiv url: http://arxiv.org/abs/2404.05534v1
- Date: Mon, 8 Apr 2024 14:00:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 14:15:19.813370
- Title: Ordre public exceptions for algorithmic surveillance patents
- Title(参考訳): アルゴリズムによる監視特許の公的な例外
- Authors: Alina Wernick,
- Abstract要約: ほとんどの場合、アルゴリズムによる監視特許を特許性から除外することは望ましくないと結論付けている。
このような特許の開示は、公共の監視のための監視のブラックボックスを開くことで、社会的観点から肯定的な外部性を持っている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This chapter explores the role of patent protection in algorithmic surveillance and whether ordre public exceptions from patentability should apply to such patents, due to their potential to enable human rights violations. It concludes that in most cases, it is undesirable to exclude algorithmic surveillance patents from patentability, as the patent system is ill-equipped to evaluate the impacts of the exploitation of such technologies. Furthermore, the disclosure of such patents has positive externalities from the societal perspective by opening the black box of surveillance for public scrutiny.
- Abstract(参考訳): この章では、アルゴリズムによる監視における特許保護の役割と、人権侵害を可能にする可能性から、特許可能性から公共の例外が適用されるべきかどうかを論じる。
たいていの場合、そのような技術の活用による影響を評価するのに特許制度が不十分であるため、アルゴリズムによる監視特許を特許性から除外することは望ましくないと結論付けている。
さらに、そのような特許の開示は、公的監視のための監視のブラックボックスを開くことで、社会的観点から肯定的な外部性を持っている。
関連論文リスト
- PatentEdits: Framing Patent Novelty as Textual Entailment [62.8514393375952]
このデータセットには105万例の修正が成功している。
我々は、文章を文単位でラベル付けするアルゴリズムを設計し、これらの編集がいかに大きな言語モデルで予測できるかを確立する。
引用引用文と起草文の文的含意を評価することは,どの発明的主張が変化しないか,あるいは先行技術に関して新規かを予測するのに特に有効であることを示す。
論文 参考訳(メタデータ) (2024-11-20T17:23:40Z) - Structural Representation Learning and Disentanglement for Evidential Chinese Patent Approval Prediction [19.287231890434718]
本稿では,検索に基づく分類手法を用いて,本課題の先駆的取り組みについて述べる。
本稿では,構造表現学習と絡み合いに着目したDiSPatという新しいフレームワークを提案する。
弊社のフレームワークは、特許承認の予測に関する最先端のベースラインを超越し、明確性の向上も示している。
論文 参考訳(メタデータ) (2024-08-23T05:44:16Z) - Randomization Techniques to Mitigate the Risk of Copyright Infringement [48.75580082851766]
著作権保護の現在の慣行を補完する潜在的なランダム化手法について検討する。
これは、著作権の先例において実質的な類似性を決定する規則の固有の曖昧さによって動機付けられている。
差分プライバシーのような同様にランダム化されたアプローチは、プライバシーリスクを軽減することに成功している。
論文 参考訳(メタデータ) (2024-08-21T20:55:00Z) - Open Problems in Technical AI Governance [93.89102632003996]
テクニカルAIガバナンス(Technical AI Governance)は、AIの効果的なガバナンスを支援するための技術分析とツールである。
本論文は、AIガバナンスへの貢献を目指す技術研究者や研究資金提供者のためのリソースとして意図されている。
論文 参考訳(メタデータ) (2024-07-20T21:13:56Z) - ClaimCompare: A Data Pipeline for Evaluation of Novelty Destroying Patent Pairs [2.60235825984014]
我々は、IRおよびMLモデルのトレーニングに適したラベル付き特許請求データセットを生成するように設計された、新しいデータパイプラインであるCrimCompareを紹介する。
私たちの知る限りでは、ClaymCompareは、特許データセットを破壊する新規性を複数生成できる最初のパイプラインです。
論文 参考訳(メタデータ) (2024-07-16T21:38:45Z) - InstructPatentGPT: Training patent language models to follow instructions with human feedback [0.9790236766474201]
この研究は、言語モデルが付与される可能性の高い特許クレームを生成する可能性を高めることを目的としている。
言語モデルの制御性を示すために、システムは与えられた特許と異なる報酬を持つプレグラントアプリケーションから学習する。
論文 参考訳(メタデータ) (2024-05-25T11:48:50Z) - Natural Language Processing in Patents: A Survey [0.0]
重要な技術的および法的情報をカプセル化した特許は、自然言語処理(NLP)アプリケーションのための豊富なドメインを提供する。
NLP技術が発展するにつれて、大規模言語モデル(LLM)は一般的なテキスト処理や生成タスクにおいて優れた能力を示してきた。
本稿は,NLP研究者に,この複雑な領域を効率的にナビゲートするために必要な知識を付与することを目的とする。
論文 参考訳(メタデータ) (2024-03-06T23:17:16Z) - Unveiling Black-boxes: Explainable Deep Learning Models for Patent
Classification [48.5140223214582]
深部不透明ニューラルネットワーク(DNN)を利用した多ラベル特許分類のための最先端手法
レイヤワイド関連伝搬(Layer-wise Relevance propagation, LRP)を導入し, 特許の詳細な分類手法を提案する。
関連性スコアを考慮し、予測された特許クラスに関連する単語を視覚化して説明を生成する。
論文 参考訳(メタデータ) (2023-10-31T14:11:37Z) - Having your Privacy Cake and Eating it Too: Platform-supported Auditing
of Social Media Algorithms for Public Interest [70.02478301291264]
ソーシャルメディアプラットフォームは、情報や機会へのアクセスをキュレートするので、公衆の言論を形成する上で重要な役割を果たす。
これまでの研究では、これらのアルゴリズムが偏見や差別的な結果をもたらすことを示すためにブラックボックス法が用いられてきた。
本稿では,提案法の目標を満たすプラットフォーム支援型監査手法を提案する。
論文 参考訳(メタデータ) (2022-07-18T17:32:35Z) - Summarization, Simplification, and Generation: The Case of Patents [0.0]
本調査は,特許の特徴と現状のNLPシステムへの疑問,b) 先行研究とその進化を批判的に提示すること,c) さらなる研究が必要である研究の方向性に注意を向けることを目的としたものである。
私たちの知る限りでは、特許領域における生成的アプローチに関する最初の調査である。
論文 参考訳(メタデータ) (2021-04-30T09:28:29Z) - Overcoming Failures of Imagination in AI Infused System Development and
Deployment [71.9309995623067]
NeurIPS 2020は研究論文に「潜在的な悪用と失敗の結果」に関するインパクトステートメントを含むよう要求した。
我々は、害の枠組みは文脈に適応し、潜在的な利害関係者、システム余裕、および最も広い意味での害を評価するための実行可能なプロキシを考える必要があると論じている。
論文 参考訳(メタデータ) (2020-11-26T18:09:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。