End-to-End JPEG Decoding and Artifacts Suppression Using Heterogeneous
Residual Convolutional Neural Network
- URL: http://arxiv.org/abs/2007.00639v1
- Date: Wed, 1 Jul 2020 17:44:00 GMT
- Title: End-to-End JPEG Decoding and Artifacts Suppression Using Heterogeneous
Residual Convolutional Neural Network
- Authors: Jun Niu
- Abstract summary: Existing deep learning models separate JPEG artifacts suppression from the decoding protocol as independent task.
We take one step forward to design a true end-to-end heterogeneous residual convolutional neural network (HR-CNN) with spectrum decomposition and heterogeneous reconstruction mechanism.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing deep learning models separate JPEG artifacts suppression from the
decoding protocol as independent task. In this work, we take one step forward
to design a true end-to-end heterogeneous residual convolutional neural network
(HR-CNN) with spectrum decomposition and heterogeneous reconstruction
mechanism. Benefitting from the full CNN architecture and GPU acceleration, the
proposed model considerably improves the reconstruction efficiency. Numerical
experiments show that the overall reconstruction speed reaches to the same
magnitude of the standard CPU JPEG decoding protocol, while both decoding and
artifacts suppression are completed together. We formulate the JPEG artifacts
suppression task as an interactive process of decoding and image detail
reconstructions. A heterogeneous, fully convolutional, mechanism is proposed to
particularly address the uncorrelated nature of different spectral channels.
Directly starting from the JPEG code in k-space, the network first extracts the
spectral samples channel by channel, and restores the spectral snapshots with
expanded throughput. These intermediate snapshots are then heterogeneously
decoded and merged into the pixel space image. A cascaded residual learning
segment is designed to further enhance the image details. Experiments verify
that the model achieves outstanding performance in JPEG artifacts suppression,
while its full convolutional operations and elegant network structure offers
higher computational efficiency for practical online usage compared with other
deep learning models on this topic.
Related papers
- Enhancing Perception Quality in Remote Sensing Image Compression via Invertible Neural Network [10.427300958330816]
Decoding remote sensing images to achieve high perceptual quality, particularly at lows, remains a significant challenge.
We propose the invertible neural network-based remote sensing image compression (INN-RSIC) method.
Our INN-RSIC significantly outperforms the existing state-of-the-art traditional and deep learning-based image compression methods in terms of perception quality.
arXiv Detail & Related papers (2024-05-17T03:52:37Z) - JDEC: JPEG Decoding via Enhanced Continuous Cosine Coefficients [17.437568540883106]
We propose a practical approach to JPEG image decoding, utilizing a local implicit neural representation with continuous cosine formulation.
Our proposed network achieves state-of-the-art performance in flexible color image JPEG artifact removal tasks.
arXiv Detail & Related papers (2024-04-03T03:28:04Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Degradation-Aware Unfolding Half-Shuffle Transformer for Spectral
Compressive Imaging [142.11622043078867]
We propose a principled Degradation-Aware Unfolding Framework (DAUF) that estimates parameters from the compressed image and physical mask, and then uses these parameters to control each iteration.
By plugging HST into DAUF, we establish the first Transformer-based deep unfolding method, Degradation-Aware Unfolding Half-Shuffle Transformer (DAUHST) for HSI reconstruction.
arXiv Detail & Related papers (2022-05-20T11:37:44Z) - Reducing Redundancy in the Bottleneck Representation of the Autoencoders [98.78384185493624]
Autoencoders are a type of unsupervised neural networks, which can be used to solve various tasks.
We propose a scheme to explicitly penalize feature redundancies in the bottleneck representation.
We tested our approach across different tasks: dimensionality reduction using three different dataset, image compression using the MNIST dataset, and image denoising using fashion MNIST.
arXiv Detail & Related papers (2022-02-09T18:48:02Z) - Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG
Encoder-Decoder [73.48927855855219]
We propose a system that learns to improve the encoding performance by enhancing its internal neural representations on both the encoder and decoder ends.
Experiments demonstrate that our approach successfully improves the rate-distortion performance over JPEG across various quality metrics.
arXiv Detail & Related papers (2022-01-27T20:20:03Z) - Image Compression with Recurrent Neural Network and Generalized Divisive
Normalization [3.0204520109309843]
Deep learning has gained huge attention from the research community and produced promising image reconstruction results.
Recent methods focused on developing deeper and more complex networks, which significantly increased network complexity.
In this paper, two effective novel blocks are developed: analysis and block synthesis that employs the convolution layer and Generalized Divisive Normalization (GDN) in the variable-rate encoder and decoder side.
arXiv Detail & Related papers (2021-09-05T05:31:55Z) - Spatially-Adaptive Image Restoration using Distortion-Guided Networks [51.89245800461537]
We present a learning-based solution for restoring images suffering from spatially-varying degradations.
We propose SPAIR, a network design that harnesses distortion-localization information and dynamically adjusts to difficult regions in the image.
arXiv Detail & Related papers (2021-08-19T11:02:25Z) - Convolutional Autoencoder for Blind Hyperspectral Image Unmixing [0.0]
spectral unmixing is a technique to decompose a mixed pixel into two fundamental representatives: endmembers and abundances.
In this paper, a novel architecture is proposed to perform blind unmixing on hyperspectral images.
arXiv Detail & Related papers (2020-11-18T17:41:31Z) - Modeling Lost Information in Lossy Image Compression [72.69327382643549]
Lossy image compression is one of the most commonly used operators for digital images.
We propose a novel invertible framework called Invertible Lossy Compression (ILC) to largely mitigate the information loss problem.
arXiv Detail & Related papers (2020-06-22T04:04:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.