360$^\circ$REA: Towards A Reusable Experience Accumulation with 360° Assessment for Multi-Agent System
- URL: http://arxiv.org/abs/2404.05569v2
- Date: Wed, 26 Jun 2024 11:42:10 GMT
- Title: 360$^\circ$REA: Towards A Reusable Experience Accumulation with 360° Assessment for Multi-Agent System
- Authors: Shen Gao, Hao Li, Chengrui Huang, Quan Tu, Zhiliang Tian, Minlie Huang, Shuo Shang,
- Abstract summary: We argue that a comprehensive evaluation and accumulating experience from evaluation feedback is an effective approach to improving system performance.
We propose Reusable Experience Accumulation with 360$circ$ Assessment (360$circ$REA), a hierarchical multi-agent framework inspired by corporate organizational practices.
- Score: 71.96888731208838
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language model agents have demonstrated remarkable advancements across various complex tasks. Recent works focus on optimizing the agent team or employing self-reflection to iteratively solve complex tasks. Since these agents are all based on the same LLM, only conducting self-evaluation or removing underperforming agents does not substantively enhance the capability of the agents. We argue that a comprehensive evaluation and accumulating experience from evaluation feedback is an effective approach to improving system performance. In this paper, we propose Reusable Experience Accumulation with 360$^\circ$ Assessment (360$^\circ$REA), a hierarchical multi-agent framework inspired by corporate organizational practices. The framework employs a novel 360$^\circ$ performance assessment method for multi-perspective performance evaluation with fine-grained assessment. To enhance the capability of agents in addressing complex tasks, we introduce dual-level experience pool for agents to accumulate experience through fine-grained assessment. Extensive experiments on complex task datasets demonstrate the effectiveness of 360$^\circ$REA.
Related papers
- On Multi-Agent Inverse Reinforcement Learning [8.284137254112848]
We extend the Inverse Reinforcement Learning (IRL) framework to the multi-agent setting, assuming to observe agents who are following Nash Equilibrium (NE) policies.
We provide an explicit characterization of the feasible reward set and analyze how errors in estimating the transition dynamics and expert behavior impact the recovered rewards.
arXiv Detail & Related papers (2024-11-22T16:31:36Z) - From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Agent-as-a-Judge: Evaluate Agents with Agents [61.33974108405561]
We introduce the Agent-as-a-Judge framework, wherein agentic systems are used to evaluate agentic systems.
This is an organic extension of the LLM-as-a-Judge framework, incorporating agentic features that enable intermediate feedback for the entire task-solving process.
We present DevAI, a new benchmark of 55 realistic automated AI development tasks.
arXiv Detail & Related papers (2024-10-14T17:57:02Z) - Watch Every Step! LLM Agent Learning via Iterative Step-Level Process Refinement [50.481380478458945]
Iterative step-level Process Refinement (IPR) framework provides detailed step-by-step guidance to enhance agent training.
Our experiments on three complex agent tasks demonstrate that our framework outperforms a variety of strong baselines.
arXiv Detail & Related papers (2024-06-17T03:29:13Z) - Adaptive In-conversation Team Building for Language Model Agents [33.03550687362213]
Leveraging multiple large language model (LLM) agents has shown to be a promising approach for tackling complex tasks.
Our new adaptive team-building paradigm offers a flexible solution, realized through a novel agent design named Captain Agent.
A comprehensive evaluation across six real-world scenarios demonstrates that Captain Agent significantly outperforms existing multi-agent methods.
arXiv Detail & Related papers (2024-05-29T18:08:37Z) - Iterative Experience Refinement of Software-Developing Agents [81.09737243969758]
Large language models (LLMs) can leverage past experiences to reduce errors and enhance efficiency.
This paper introduces the Iterative Experience Refinement framework, enabling LLM agents to refine experiences iteratively during task execution.
arXiv Detail & Related papers (2024-05-07T11:33:49Z) - ReAct Meets ActRe: When Language Agents Enjoy Training Data Autonomy [47.42940885853956]
A$3$T is a framework that enables the Autonomous.
of Agent Trajectories in the style of ReAct.
In AlfWorld, the agent trained with A$3$T obtains a 1-shot success rate of 96%, and 100% success with 4 iterative rounds.
arXiv Detail & Related papers (2024-03-21T17:43:44Z) - AgentBoard: An Analytical Evaluation Board of Multi-turn LLM Agents [76.95062553043607]
evaluating large language models (LLMs) is essential for understanding their capabilities and facilitating their integration into practical applications.
We introduce AgentBoard, a pioneering comprehensive benchmark and accompanied open-source evaluation framework tailored to analytical evaluation of LLM agents.
arXiv Detail & Related papers (2024-01-24T01:51:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.