An Adversary-Resistant Multi-Agent LLM System via Credibility Scoring
- URL: http://arxiv.org/abs/2505.24239v1
- Date: Fri, 30 May 2025 05:57:37 GMT
- Title: An Adversary-Resistant Multi-Agent LLM System via Credibility Scoring
- Authors: Sana Ebrahimi, Mohsen Dehghankar, Abolfazl Asudeh,
- Abstract summary: We introduce a general and adversary-resistant multi-agent LLM framework based on credibility scoring.<n>Our system associates a credibility score that is used when aggregating the team outputs.
- Score: 8.779871128906787
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While multi-agent LLM systems show strong capabilities in various domains, they are highly vulnerable to adversarial and low-performing agents. To resolve this issue, in this paper, we introduce a general and adversary-resistant multi-agent LLM framework based on credibility scoring. We model the collaborative query-answering process as an iterative game, where the agents communicate and contribute to a final system output. Our system associates a credibility score that is used when aggregating the team outputs. The credibility scores are learned gradually based on the past contributions of each agent in query answering. Our experiments across multiple tasks and settings demonstrate our system's effectiveness in mitigating adversarial influence and enhancing the resilience of multi-agent cooperation, even in the adversary-majority settings.
Related papers
- How to Train a Leader: Hierarchical Reasoning in Multi-Agent LLMs [16.853362180877593]
We introduce a hierarchical multi-agent framework that trains only a single leader LLM to coordinate a team of untrained peer agents.<n>Our results highlight the effectiveness and efficiency of training a single, flexible leader for collaborative reasoning in multi-agent LLM systems.
arXiv Detail & Related papers (2025-07-11T18:34:07Z) - Cross-Task Experiential Learning on LLM-based Multi-Agent Collaboration [63.90193684394165]
We introduce multi-agent cross-task experiential learning (MAEL), a novel framework that endows LLM-driven agents with explicit cross-task learning and experience accumulation.<n>During the experiential learning phase, we quantify the quality for each step in the task-solving workflow and store the resulting rewards.<n>During inference, agents retrieve high-reward, task-relevant experiences as few-shot examples to enhance the effectiveness of each reasoning step.
arXiv Detail & Related papers (2025-05-29T07:24:37Z) - Assessing Collective Reasoning in Multi-Agent LLMs via Hidden Profile Tasks [5.120446836495469]
We introduce the Hidden Profile paradigm from social psychology as a diagnostic testbed for multi-agent LLM systems.<n>By distributing critical information asymmetrically across agents, the paradigm reveals how inter-agent dynamics support or hinder collective reasoning.<n>We find that while cooperative agents are prone to over-coordination in collective settings, increased contradiction impairs group convergence.
arXiv Detail & Related papers (2025-05-15T19:22:54Z) - MAMM-Refine: A Recipe for Improving Faithfulness in Generation with Multi-Agent Collaboration [63.31211701741323]
We extend multi-agent multi-model reasoning to generation, specifically to improving faithfulness through refinement.<n>We design intrinsic evaluations for each subtask, with our findings indicating that both multi-agent (multiple instances) and multi-model (diverse LLM types) approaches benefit error detection and critiquing.<n>We consolidate these insights into a final "recipe" called Multi-Agent Multi-Model Refinement (MAMM-Refine), where multi-agent and multi-model collaboration significantly boosts performance.
arXiv Detail & Related papers (2025-03-19T14:46:53Z) - Why Do Multi-Agent LLM Systems Fail? [91.39266556855513]
We present MAST (Multi-Agent System Failure taxonomy), the first empirically grounded taxonomy designed to understand MAS failures.<n>We analyze seven popular MAS frameworks across over 200 tasks, involving six expert human annotators.<n>We identify 14 unique failure modes, organized into 3 overarching categories, (i) specification issues, (ii) inter-agent misalignment, and (iii) task verification.
arXiv Detail & Related papers (2025-03-17T19:04:38Z) - Leveraging Large Language Models for Effective and Explainable Multi-Agent Credit Assignment [4.406086834602686]
We show how to reformulate credit assignment to the two pattern recognition problems of sequence improvement and attribution.<n>Our approach utilizes a centralized reward-critic which numerically decomposes the environment reward based on the individual contribution of each agent.<n>Both our methods far outperform the state-of-the-art on a variety of benchmarks, including Level-Based Foraging, Robotic Warehouse, and our new Spaceworld benchmark which incorporates collision-related safety constraints.
arXiv Detail & Related papers (2025-02-24T05:56:47Z) - Adaptive In-conversation Team Building for Language Model Agents [33.03550687362213]
Leveraging multiple large language model (LLM) agents has shown to be a promising approach for tackling complex tasks.<n>Our new adaptive team-building paradigm offers a flexible solution, realized through a novel agent design named Captain Agent.<n>A comprehensive evaluation across six real-world scenarios demonstrates that Captain Agent significantly outperforms existing multi-agent methods.
arXiv Detail & Related papers (2024-05-29T18:08:37Z) - Large Multimodal Agents: A Survey [78.81459893884737]
Large language models (LLMs) have achieved superior performance in powering text-based AI agents.
There is an emerging research trend focused on extending these LLM-powered AI agents into the multimodal domain.
This review aims to provide valuable insights and guidelines for future research in this rapidly evolving field.
arXiv Detail & Related papers (2024-02-23T06:04:23Z) - Controlling Large Language Model-based Agents for Large-Scale
Decision-Making: An Actor-Critic Approach [28.477463632107558]
We develop a modular framework called LLaMAC to address hallucination in Large Language Models and coordination in Multi-Agent Systems.
LLaMAC implements a value distribution encoding similar to that found in the human brain, utilizing internal and external feedback mechanisms to facilitate collaboration and iterative reasoning among its modules.
arXiv Detail & Related papers (2023-11-23T10:14:58Z) - AgentVerse: Facilitating Multi-Agent Collaboration and Exploring
Emergent Behaviors [93.38830440346783]
We propose a multi-agent framework framework that can collaboratively adjust its composition as a greater-than-the-sum-of-its-parts system.
Our experiments demonstrate that framework framework can effectively deploy multi-agent groups that outperform a single agent.
In view of these behaviors, we discuss some possible strategies to leverage positive ones and mitigate negative ones for improving the collaborative potential of multi-agent groups.
arXiv Detail & Related papers (2023-08-21T16:47:11Z) - AgentBench: Evaluating LLMs as Agents [88.45506148281379]
Large Language Models (LLMs) are becoming increasingly smart and autonomous, targeting real-world pragmatic missions beyond traditional NLP tasks.
We present AgentBench, a benchmark that currently consists of 8 distinct environments to assess LLM-as-Agent's reasoning and decision-making abilities.
arXiv Detail & Related papers (2023-08-07T16:08:11Z) - Learning From Good Trajectories in Offline Multi-Agent Reinforcement
Learning [98.07495732562654]
offline multi-agent reinforcement learning (MARL) aims to learn effective multi-agent policies from pre-collected datasets.
One agent learned by offline MARL often inherits this random policy, jeopardizing the performance of the entire team.
We propose a novel framework called Shared Individual Trajectories (SIT) to address this problem.
arXiv Detail & Related papers (2022-11-28T18:11:26Z) - Learning Cooperative Multi-Agent Policies with Partial Reward Decoupling [13.915157044948364]
One of the preeminent obstacles to scaling multi-agent reinforcement learning is assigning credit to individual agents' actions.
In this paper, we address this credit assignment problem with an approach that we call textitpartial reward decoupling (PRD)
PRD decomposes large cooperative multi-agent RL problems into decoupled subproblems involving subsets of agents, thereby simplifying credit assignment.
arXiv Detail & Related papers (2021-12-23T17:48:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.