Flexible Fairness-Aware Learning via Inverse Conditional Permutation
- URL: http://arxiv.org/abs/2404.05678v3
- Date: Fri, 01 Nov 2024 16:03:23 GMT
- Title: Flexible Fairness-Aware Learning via Inverse Conditional Permutation
- Authors: Yuheng Lai, Leying Guan,
- Abstract summary: We introduce an in-processing fairness-aware learning approach, FairICP, which integrates adversarial learning with a novel inverse conditional permutation scheme.
We show that FairICP offers a theoretically justified, flexible, and efficient scheme to promote equalized odds under fairness conditions described by complex and multidimensional sensitive attributes.
- Score: 0.0
- License:
- Abstract: Equalized odds, as a popular notion of algorithmic fairness, aims to ensure that sensitive variables, such as race and gender, do not unfairly influence the algorithm's prediction when conditioning on the true outcome. Despite rapid advancements, current research primarily focuses on equalized odds violations caused by a single sensitive attribute, leaving the challenge of simultaneously accounting for multiple attributes largely unaddressed. We bridge this gap by introducing an in-processing fairness-aware learning approach, FairICP, which integrates adversarial learning with a novel inverse conditional permutation scheme. FairICP offers a theoretically justified, flexible, and efficient scheme to promote equalized odds under fairness conditions described by complex and multidimensional sensitive attributes. The efficacy and adaptability of our method are demonstrated through both simulation studies and empirical analyses of real-world datasets.
Related papers
- Multi-Agent Reinforcement Learning from Human Feedback: Data Coverage and Algorithmic Techniques [65.55451717632317]
We study Multi-Agent Reinforcement Learning from Human Feedback (MARLHF), exploring both theoretical foundations and empirical validations.
We define the task as identifying Nash equilibrium from a preference-only offline dataset in general-sum games.
Our findings underscore the multifaceted approach required for MARLHF, paving the way for effective preference-based multi-agent systems.
arXiv Detail & Related papers (2024-09-01T13:14:41Z) - Learning Fair Invariant Representations under Covariate and Correlation Shifts Simultaneously [10.450977234741524]
We introduce a novel approach that focuses on learning a fairness-aware domain-invariant predictor.
Our approach surpasses state-of-the-art methods with respect to model accuracy as well as both group and individual fairness.
arXiv Detail & Related papers (2024-08-18T00:01:04Z) - Provable Optimization for Adversarial Fair Self-supervised Contrastive Learning [49.417414031031264]
This paper studies learning fair encoders in a self-supervised learning setting.
All data are unlabeled and only a small portion of them are annotated with sensitive attributes.
arXiv Detail & Related papers (2024-06-09T08:11:12Z) - Practical Approaches for Fair Learning with Multitype and Multivariate
Sensitive Attributes [70.6326967720747]
It is important to guarantee that machine learning algorithms deployed in the real world do not result in unfairness or unintended social consequences.
We introduce FairCOCCO, a fairness measure built on cross-covariance operators on reproducing kernel Hilbert Spaces.
We empirically demonstrate consistent improvements against state-of-the-art techniques in balancing predictive power and fairness on real-world datasets.
arXiv Detail & Related papers (2022-11-11T11:28:46Z) - SLIDE: a surrogate fairness constraint to ensure fairness consistency [1.3649494534428745]
We propose a new surrogate fairness constraint called SLIDE, which is feasible and achieves a fast convergence rate.
Numerical experiments confirm that SLIDE works well for various benchmark datasets.
arXiv Detail & Related papers (2022-02-07T13:50:21Z) - Normalise for Fairness: A Simple Normalisation Technique for Fairness in Regression Machine Learning Problems [46.93320580613236]
We present a simple, yet effective method based on normalisation (FaiReg) for regression problems.
We compare it with two standard methods for fairness, namely data balancing and adversarial training.
The results show the superior performance of diminishing the effects of unfairness better than data balancing.
arXiv Detail & Related papers (2022-02-02T12:26:25Z) - Fair Normalizing Flows [10.484851004093919]
We present Fair Normalizing Flows (FNF), a new approach offering more rigorous fairness guarantees for learned representations.
The main advantage of FNF is that its exact likelihood computation allows us to obtain guarantees on the maximum unfairness of any potentially adversarial downstream predictor.
We experimentally demonstrate the effectiveness of FNF in enforcing various group fairness notions, as well as other attractive properties such as interpretability and transfer learning.
arXiv Detail & Related papers (2021-06-10T17:35:59Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
dataset bias is one of the prevailing causes of unfairness in machine learning.
We study whether models trained with uncertainty-based ALs are fairer in their decisions with respect to a protected class.
We also explore the interaction of algorithmic fairness methods such as gradient reversal (GRAD) and BALD.
arXiv Detail & Related papers (2021-04-14T14:20:22Z) - Beyond Individual and Group Fairness [90.4666341812857]
We present a new data-driven model of fairness that is guided by the unfairness complaints received by the system.
Our model supports multiple fairness criteria and takes into account their potential incompatibilities.
arXiv Detail & Related papers (2020-08-21T14:14:44Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
We consider fairness in the integration component of data management.
We propose an approach to identify a sub-collection of features that ensure the fairness of the dataset.
arXiv Detail & Related papers (2020-06-10T20:20:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.