論文の概要: Comprehensive Study on German Language Models for Clinical and Biomedical Text Understanding
- arxiv url: http://arxiv.org/abs/2404.05694v2
- Date: Wed, 8 May 2024 08:53:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-09 16:24:12.895970
- Title: Comprehensive Study on German Language Models for Clinical and Biomedical Text Understanding
- Title(参考訳): 臨床・バイオメディカルテキスト理解のためのドイツ語モデルに関する総合的研究
- Authors: Ahmad Idrissi-Yaghir, Amin Dada, Henning Schäfer, Kamyar Arzideh, Giulia Baldini, Jan Trienes, Max Hasin, Jeanette Bewersdorff, Cynthia S. Schmidt, Marie Bauer, Kaleb E. Smith, Jiang Bian, Yonghui Wu, Jörg Schlötterer, Torsten Zesch, Peter A. Horn, Christin Seifert, Felix Nensa, Jens Kleesiek, Christoph M. Friedrich,
- Abstract要約: 我々は、翻訳された英語の医療データとドイツの臨床データの3Bトークンから2.4Bトークンを抽出し、いくつかのドイツの医療言語モデルを事前訓練した。
得られたモデルは、名前付きエンティティ認識(NER)、多ラベル分類、抽出質問応答など、様々なドイツの下流タスクで評価された。
本研究は, 臨床モデルとスクラッチからトレーニングした成績を一致させたり, 上回ったりする能力が, 連続事前訓練によって実証されていることを結論する。
- 参考スコア(独自算出の注目度): 16.220303664681172
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent advances in natural language processing (NLP) can be largely attributed to the advent of pre-trained language models such as BERT and RoBERTa. While these models demonstrate remarkable performance on general datasets, they can struggle in specialized domains such as medicine, where unique domain-specific terminologies, domain-specific abbreviations, and varying document structures are common. This paper explores strategies for adapting these models to domain-specific requirements, primarily through continuous pre-training on domain-specific data. We pre-trained several German medical language models on 2.4B tokens derived from translated public English medical data and 3B tokens of German clinical data. The resulting models were evaluated on various German downstream tasks, including named entity recognition (NER), multi-label classification, and extractive question answering. Our results suggest that models augmented by clinical and translation-based pre-training typically outperform general domain models in medical contexts. We conclude that continuous pre-training has demonstrated the ability to match or even exceed the performance of clinical models trained from scratch. Furthermore, pre-training on clinical data or leveraging translated texts have proven to be reliable methods for domain adaptation in medical NLP tasks.
- Abstract(参考訳): 自然言語処理(NLP)の最近の進歩は、BERTやRoBERTaといった事前訓練された言語モデルの出現に大きく寄与する。
これらのモデルは一般的なデータセットで顕著なパフォーマンスを示すが、ユニークなドメイン固有の用語、ドメイン固有の略語、および様々なドキュメント構造が一般的である医学のような特殊なドメインでは苦労することがある。
本稿では、これらのモデルをドメイン固有の要求に適応するための戦略を、主にドメイン固有のデータに対する継続的な事前学習を通じて検討する。
我々は、翻訳された英語の医療データとドイツの臨床データの3Bトークンから2.4Bトークンを抽出し、いくつかのドイツの医療言語モデルを事前訓練した。
得られたモデルは、名前付きエンティティ認識(NER)、多ラベル分類、抽出質問応答など、様々なドイツの下流タスクで評価された。
以上の結果から,臨床および翻訳による事前訓練により強化されたモデルは,医学的文脈における一般的なドメインモデルより優れていることが示唆された。
本研究は, 臨床モデルとスクラッチからトレーニングした成績を一致させたり, 上回ったりできることを実証した。
さらに,臨床データによる事前トレーニングや翻訳テキストの活用は,NLPタスクにおける領域適応の信頼性の高い方法であることが証明されている。
関連論文リスト
- Medical Vision-Language Pre-Training for Brain Abnormalities [96.1408455065347]
本稿では,PubMedなどの公共リソースから,医用画像・テキスト・アライメントデータを自動的に収集する方法を示す。
特に,まず大きな脳画像テキストデータセットを収集することにより,事前学習プロセスの合理化を図るパイプラインを提案する。
また,医療領域におけるサブフィギュアをサブキャプションにマッピングするというユニークな課題についても検討した。
論文 参考訳(メタデータ) (2024-04-27T05:03:42Z) - Enhancing Medical Specialty Assignment to Patients using NLP Techniques [0.0]
本稿では,計算効率を向上しつつ,優れた性能を実現する方法を提案する。
具体的には、キーワードを用いて、大規模なテキストコーパスで事前訓練された言語モデルより優れたディープラーニングアーキテクチャを訓練する。
その結果,テキスト分類におけるキーワードの利用により,分類性能が著しく向上することが示唆された。
論文 参考訳(メタデータ) (2023-12-09T14:13:45Z) - Cross-Lingual Knowledge Transfer for Clinical Phenotyping [55.92262310716537]
本稿では,英語を使わないクリニックに対して,このタスクを実行するための言語間知識伝達戦略について検討する。
ギリシャ語とスペイン語のクリニックに対して,異なる臨床領域のクリニカルノートを活用して,これらの戦略を評価する。
以上の結果から,多言語データを用いることで,臨床表現型モデルが改善され,データの疎度を補うことが可能であることが示唆された。
論文 参考訳(メタデータ) (2022-08-03T08:33:21Z) - Detecting Text Formality: A Study of Text Classification Approaches [78.11745751651708]
本研究は,統計的,ニューラルベース,トランスフォーマーベースの機械学習手法に基づく形式性検出手法の体系的研究を初めて行う。
単言語,多言語,言語横断の3種類の実験を行った。
本研究は,モノリンガルおよび多言語形式分類タスクのためのトランスフォーマーベースモデルに対するChar BiLSTMモデルの克服を示す。
論文 参考訳(メタデータ) (2022-04-19T16:23:07Z) - CLIN-X: pre-trained language models and a study on cross-task transfer
for concept extraction in the clinical domain [22.846469609263416]
事前学習したCLIN-X(Clinical XLM-R)言語モデルを導入し、CLIN-Xが他の事前学習したトランスフォーマーモデルよりも優れていることを示す。
本研究は,250のラベル付き文が利用可能である場合に,47F1ポイントまで改善された注釈付きデータがないにもかかわらず,安定したモデル性能を示す。
本研究は,非標準領域における概念抽出におけるCLIN-Xとしての特殊言語モデルの重要性を強調した。
論文 参考訳(メタデータ) (2021-12-16T10:07:39Z) - GERNERMED -- An Open German Medical NER Model [0.7310043452300736]
医療データ分析の分野でのデータマイニングは、関連するデータを取得するために、構造化されていないデータの処理にのみ依存する必要があることが多い。
本研究では,ドイツのテキストデータにおける医学的実体型を検出するためのNERタスクのための,最初のオープンなニューラルNLPモデルであるGERNERMEDを提案する。
論文 参考訳(メタデータ) (2021-09-24T17:53:47Z) - Biomedical and Clinical Language Models for Spanish: On the Benefits of
Domain-Specific Pretraining in a Mid-Resource Scenario [0.05277024349608833]
本研究は, 異なる事前学習選択を実験することにより, スペイン語の生物医学的, 臨床的言語モデルを示す。
モデルをスクラッチからトレーニングするための十分な臨床データがないため,混合ドメイン事前訓練法とクロスドメイン移行法を適用し,優れたバイオクリニカルモデルを構築した。
論文 参考訳(メタデータ) (2021-09-08T12:12:07Z) - Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language
Model [58.27176041092891]
最近の研究は、大規模未ラベルテキストに対する言語間言語モデルの事前学習が、大幅な性能向上をもたらすことを示唆している。
本稿では,絡み合った事前学習した言語間表現からドメイン固有の特徴を自動的に抽出する,教師なし特徴分解手法を提案する。
提案モデルでは、相互情報推定を利用して、言語間モデルによって計算された表現をドメイン不変部分とドメイン固有部分に分解する。
論文 参考訳(メタデータ) (2020-11-23T16:00:42Z) - UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual
Embeddings Using the Unified Medical Language System Metathesaurus [73.86656026386038]
事前学習プロセス中にドメイン知識を統合するコンテキスト埋め込みモデルであるUmlsBERTを紹介する。
これらの2つの戦略を適用することで、UmlsBERTは、臨床領域の知識を単語埋め込みにエンコードし、既存のドメイン固有モデルより優れている。
論文 参考訳(メタデータ) (2020-10-20T15:56:31Z) - Domain-Specific Language Model Pretraining for Biomedical Natural
Language Processing [73.37262264915739]
バイオメディシンなどのラベルなしテキストの少ないドメインでは、スクラッチから言語モデルを事前学習することで、かなりの利益が得られることを示す。
実験の結果, ドメイン固有のプレトレーニングは, 幅広い生物医学的NLPタスクの基盤となることが明らかとなった。
論文 参考訳(メタデータ) (2020-07-31T00:04:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。