Evaluating the Effectiveness of Artificial Intelligence in Predicting Adverse Drug Reactions among Cancer Patients: A Systematic Review and Meta-Analysis
- URL: http://arxiv.org/abs/2404.05762v1
- Date: Sat, 6 Apr 2024 11:20:28 GMT
- Title: Evaluating the Effectiveness of Artificial Intelligence in Predicting Adverse Drug Reactions among Cancer Patients: A Systematic Review and Meta-Analysis
- Authors: Fatma Zahra Abdeldjouad, Menaouer Brahami, Mohammed Sabri,
- Abstract summary: This study aims to assess the performance of artificial intelligence models in predicting adverse drug reactions in patients with cancer.
The use of AI in cancer treatment shows great potential, with models demonstrating high specificity and sensitivity in predicting ADRs.
However, standardized research and multicenter studies are needed to improve the quality of evidence.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adverse drug reactions considerably impact patient outcomes and healthcare costs in cancer therapy. Using artificial intelligence to predict adverse drug reactions in real time could revolutionize oncology treatment. This study aims to assess the performance of artificial intelligence models in predicting adverse drug reactions in patients with cancer. This is the first systematic review and meta-analysis. Scopus, PubMed, IEEE Xplore, and ACM Digital Library databases were searched for studies in English, French, and Arabic from January 1, 2018, to August 20, 2023. The inclusion criteria were: (1) peer-reviewed research articles; (2) use of artificial intelligence algorithms (machine learning, deep learning, knowledge graphs); (3) study aimed to predict adverse drug reactions (cardiotoxicity, neutropenia, nephrotoxicity, hepatotoxicity); (4) study was on cancer patients. The data were extracted and evaluated by three reviewers for study quality. Of the 332 screened articles, 17 studies (5%) involving 93,248 oncology patients from 17 countries were included in the systematic review, of which ten studies synthesized the meta-analysis. A random-effects model was created to pool the sensitivity, specificity, and AUC of the included studies. The pooled results were 0.82 (95% CI:0.69, 0.9), 0.84 (95% CI:0.75, 0.9), and 0.83 (95% CI:0.77, 0.87) for sensitivity, specificity, and AUC, respectively, of ADR predictive models. Biomarkers proved their effectiveness in predicting ADRs, yet they were adopted by only half of the reviewed studies. The use of AI in cancer treatment shows great potential, with models demonstrating high specificity and sensitivity in predicting ADRs. However, standardized research and multicenter studies are needed to improve the quality of evidence. AI can enhance cancer patient care by bridging the gap between data-driven insights and clinical expertise.
Related papers
- Multi-modal AI for comprehensive breast cancer prognostication [18.691704371847855]
We developed a test for breast cancer patient stratification based on digital pathology and clinical characteristics using novel AI methods.
The test was developed and evaluated using data from a total of 8,161 breast cancer patients across 15 cohorts.
Results suggest that our AI test can improve accuracy, extend applicability to a wider range of patients, and enhance access to treatment selection tools.
arXiv Detail & Related papers (2024-10-28T17:54:29Z) - Artificial Intelligence-Based Triaging of Cutaneous Melanocytic Lesions [0.8864540224289991]
Pathologists are facing an increasing workload due to a growing volume of cases and the need for more comprehensive diagnoses.
We developed an artificial intelligence (AI) model for triaging cutaneous melanocytic lesions based on whole slide images.
arXiv Detail & Related papers (2024-10-14T13:49:04Z) - Artificial intelligence for abnormality detection in high volume neuroimaging: a systematic review and meta-analysis [0.5934394862891423]
Most studies evaluating artificial intelligence (AI) models that detect abnormalities in neuroimaging are tested on unrepresentative patient cohorts.
The aim was to determine the diagnostic test accuracy and summarise the evidence supporting the use of AI models performing first-line, high-volume neuroimaging tasks.
arXiv Detail & Related papers (2024-05-09T10:12:17Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals.
Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data.
arXiv Detail & Related papers (2024-04-26T16:39:50Z) - CT-ADE: An Evaluation Benchmark for Adverse Drug Event Prediction from Clinical Trial Results [0.10051474951635876]
Adverse drug events (ADEs) significantly impact clinical research, causing many clinical trial failures.
To support this effort, we introduce CT-ADE, a dataset for multilabel predictive modeling of ADEs in monopharmacy treatments.
CT-ADE integrates data from 2,497 unique drugs, encompassing 168,984 drug-ADE pairs extracted from clinical trials, annotated with patient and contextual information, and comprehensive ADE concepts standardized across multiple levels of the MedDRA.
arXiv Detail & Related papers (2024-04-19T12:04:32Z) - Detection of subclinical atherosclerosis by image-based deep learning on chest x-ray [86.38767955626179]
Deep-learning algorithm to predict coronary artery calcium (CAC) score was developed on 460 chest x-ray.
The diagnostic accuracy of the AICAC model assessed by the area under the curve (AUC) was the primary outcome.
arXiv Detail & Related papers (2024-03-27T16:56:14Z) - Artificial Intelligence in Ovarian Cancer Histopathology: A Systematic
Review [1.832300121391956]
Methods: A search of PubMed, Scopus, Web of Science, CENTRAL, and WHO-ICTRP was conducted.
Risk of bias was assessed using PROBAST.
There were 80 models of interest, including 37 diagnostic models, 22 prognostic models, and 21 models with other diagnostically relevant outcomes.
All models were found to be at high or unclear risk of bias overall, with most research having a high risk of bias in the analysis.
arXiv Detail & Related papers (2023-03-31T12:26:29Z) - Foresight -- Deep Generative Modelling of Patient Timelines using
Electronic Health Records [46.024501445093755]
Temporal modelling of medical history can be used to forecast and simulate future events, estimate risk, suggest alternative diagnoses or forecast complications.
We present Foresight, a novel GPT3-based pipeline that uses NER+L tools (i.e. MedCAT) to convert document text into structured, coded concepts.
arXiv Detail & Related papers (2022-12-13T19:06:00Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - HINT: Hierarchical Interaction Network for Trial Outcome Prediction
Leveraging Web Data [56.53715632642495]
Clinical trials face uncertain outcomes due to issues with efficacy, safety, or problems with patient recruitment.
In this paper, we propose Hierarchical INteraction Network (HINT) for more general, clinical trial outcome predictions.
arXiv Detail & Related papers (2021-02-08T15:09:07Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
We combine radiomics of lung opacities and non-imaging features from demographic data, vital signs, and laboratory findings to predict need for intensive care unit admission.
Our methods may also be applied to other lung diseases including but not limited to community acquired pneumonia.
arXiv Detail & Related papers (2020-07-20T19:08:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.