Artificial Intelligence in the Autonomous Navigation of Endovascular Interventions: A Systematic Review
- URL: http://arxiv.org/abs/2405.03305v1
- Date: Mon, 6 May 2024 09:28:30 GMT
- Title: Artificial Intelligence in the Autonomous Navigation of Endovascular Interventions: A Systematic Review
- Authors: Harry Robertshaw, Lennart Karstensen, Benjamin Jackson, Hadi Sadati, Kawal Rhode, Sebastien Ourselin, Alejandro Granados, Thomas C Booth,
- Abstract summary: Autonomous navigation of devices in endovascular interventions can decrease operation times, improve decision-making during surgery, and reduce operator radiation exposure while increasing access to treatment.
This systematic review explores recent literature to assess the impact, challenges, and opportunities artificial intelligence (AI) has for the autonomous endovascular intervention navigation.
- Score: 35.14795071114005
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Purpose: Autonomous navigation of devices in endovascular interventions can decrease operation times, improve decision-making during surgery, and reduce operator radiation exposure while increasing access to treatment. This systematic review explores recent literature to assess the impact, challenges, and opportunities artificial intelligence (AI) has for the autonomous endovascular intervention navigation. Methods: PubMed and IEEEXplore databases were queried. Eligibility criteria included studies investigating the use of AI in enabling the autonomous navigation of catheters/guidewires in endovascular interventions. Following PRISMA, articles were assessed using QUADAS-2. PROSPERO: CRD42023392259. Results: Among 462 studies, fourteen met inclusion criteria. Reinforcement learning (9/14, 64%) and learning from demonstration (7/14, 50%) were used as data-driven models for autonomous navigation. Studies predominantly utilised physical phantoms (10/14, 71%) and in silico (4/14, 29%) models. Experiments within or around the blood vessels of the heart were reported by the majority of studies (10/14, 71%), while simple non-anatomical vessel platforms were used in three studies (3/14, 21%), and the porcine liver venous system in one study. We observed that risk of bias and poor generalisability were present across studies. No procedures were performed on patients in any of the studies reviewed. Studies lacked patient selection criteria, reference standards, and reproducibility, resulting in low clinical evidence levels. Conclusions: AI's potential in autonomous endovascular navigation is promising, but in an experimental proof-of-concept stage, with a technology readiness level of 3. We highlight that reference standards with well-identified performance metrics are crucial to allow for comparisons of data-driven algorithms proposed in the years to come.
Related papers
- Machine learning algorithms to predict the risk of rupture of intracranial aneurysms: a systematic review [0.34230991323146376]
Subarachnoid haemorrhage is a potentially fatal consequence of intracranial aneurysm rupture.
Machine learning can be applied to predict the risk of rupture for intracranial aneurysms.
However, the evidence does not comprehensively demonstrate superiority to existing practice.
arXiv Detail & Related papers (2024-12-06T03:25:01Z) - Artificial Intelligence-Informed Handheld Breast Ultrasound for Screening: A Systematic Review of Diagnostic Test Accuracy [0.3859048418931631]
Handheld breast ultrasound (BUS) is a low-cost alternative but requires substantial training.
Artificial intelligence (AI) enabled BUS may aid in both the detection (perception) and classification (interpretation) of breast cancer.
Findings: 5.7 million BUS images from over 185,000 patients were used for AI training or validation.
arXiv Detail & Related papers (2024-11-11T19:31:06Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
This paper presents meticulously curated AIready datasets covering multi-modal data (e.g., drug molecule, disease code, text, categorical/numerical features) and 8 crucial prediction challenges in clinical trial design.
We provide basic validation methods for each task to ensure the datasets' usability and reliability.
We anticipate that the availability of such open-access datasets will catalyze the development of advanced AI approaches for clinical trial design.
arXiv Detail & Related papers (2024-06-30T09:13:10Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - Artificial intelligence for abnormality detection in high volume neuroimaging: a systematic review and meta-analysis [0.5934394862891423]
Most studies evaluating artificial intelligence (AI) models that detect abnormalities in neuroimaging are tested on unrepresentative patient cohorts.
The aim was to determine the diagnostic test accuracy and summarise the evidence supporting the use of AI models performing first-line, high-volume neuroimaging tasks.
arXiv Detail & Related papers (2024-05-09T10:12:17Z) - Evaluating the Effectiveness of Artificial Intelligence in Predicting Adverse Drug Reactions among Cancer Patients: A Systematic Review and Meta-Analysis [0.0]
This study aims to assess the performance of artificial intelligence models in predicting adverse drug reactions in patients with cancer.
The use of AI in cancer treatment shows great potential, with models demonstrating high specificity and sensitivity in predicting ADRs.
However, standardized research and multicenter studies are needed to improve the quality of evidence.
arXiv Detail & Related papers (2024-04-06T11:20:28Z) - De-identification of clinical free text using natural language
processing: A systematic review of current approaches [48.343430343213896]
Natural language processing has repeatedly demonstrated its feasibility in automating the de-identification process.
Our study aims to provide systematic evidence on how the de-identification of clinical free text has evolved in the last thirteen years.
arXiv Detail & Related papers (2023-11-28T13:20:41Z) - Simulation-based Inference for Cardiovascular Models [57.92535897767929]
We use simulation-based inference to solve the inverse problem of mapping waveforms back to plausible physiological parameters.
We perform an in-silico uncertainty analysis of five biomarkers of clinical interest.
We study the gap between in-vivo and in-silico with the MIMIC-III waveform database.
arXiv Detail & Related papers (2023-07-26T02:34:57Z) - Artificial Intelligence in Ovarian Cancer Histopathology: A Systematic
Review [1.832300121391956]
Methods: A search of PubMed, Scopus, Web of Science, CENTRAL, and WHO-ICTRP was conducted.
Risk of bias was assessed using PROBAST.
There were 80 models of interest, including 37 diagnostic models, 22 prognostic models, and 21 models with other diagnostically relevant outcomes.
All models were found to be at high or unclear risk of bias overall, with most research having a high risk of bias in the analysis.
arXiv Detail & Related papers (2023-03-31T12:26:29Z) - Building Brains: Subvolume Recombination for Data Augmentation in Large
Vessel Occlusion Detection [56.67577446132946]
A large training data set is required for a standard deep learning-based model to learn this strategy from data.
We propose an augmentation method that generates artificial training samples by recombining vessel tree segmentations of the hemispheres from different patients.
In line with the augmentation scheme, we use a 3D-DenseNet fed with task-specific input, fostering a side-by-side comparison between the hemispheres.
arXiv Detail & Related papers (2022-05-05T10:31:57Z) - The pitfalls of using open data to develop deep learning solutions for
COVID-19 detection in chest X-rays [64.02097860085202]
Deep learning models have been developed to identify COVID-19 from chest X-rays.
Results have been exceptional when training and testing on open-source data.
Data analysis and model evaluations show that the popular open-source dataset COVIDx is not representative of the real clinical problem.
arXiv Detail & Related papers (2021-09-14T10:59:11Z) - A Systematic Review of Natural Language Processing Applied to Radiology
Reports [3.600747505433814]
This study systematically assesses recent literature in NLP applied to radiology reports.
Our analysis is based on 21 variables including radiology characteristics, NLP methodology, performance, study, and clinical application characteristics.
arXiv Detail & Related papers (2021-02-18T18:54:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.