Self-Labeling in Multivariate Causality and Quantification for Adaptive Machine Learning
- URL: http://arxiv.org/abs/2404.05809v1
- Date: Mon, 8 Apr 2024 18:16:22 GMT
- Title: Self-Labeling in Multivariate Causality and Quantification for Adaptive Machine Learning
- Authors: Yutian Ren, Aaron Haohua Yen, G. P. Li,
- Abstract summary: An interactive causality based self-labeling method was proposed to autonomously associate causally related data streams for domain adaptation.
This paper further develops the self-labeling framework and its theoretical foundations to address these research questions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adaptive machine learning (ML) aims to allow ML models to adapt to ever-changing environments with potential concept drift after model deployment. Traditionally, adaptive ML requires a new dataset to be manually labeled to tailor deployed models to altered data distributions. Recently, an interactive causality based self-labeling method was proposed to autonomously associate causally related data streams for domain adaptation, showing promising results compared to traditional feature similarity-based semi-supervised learning. Several unanswered research questions remain, including self-labeling's compatibility with multivariate causality and the quantitative analysis of the auxiliary models used in the self-labeling. The auxiliary models, the interaction time model (ITM) and the effect state detector (ESD), are vital to the success of self-labeling. This paper further develops the self-labeling framework and its theoretical foundations to address these research questions. A framework for the application of self-labeling to multivariate causal graphs is proposed using four basic causal relationships, and the impact of non-ideal ITM and ESD performance is analyzed. A simulated experiment is conducted based on a multivariate causal graph, validating the proposed theory.
Related papers
- Self-Healing Machine Learning: A Framework for Autonomous Adaptation in Real-World Environments [50.310636905746975]
Real-world machine learning systems often encounter model performance degradation due to distributional shifts in the underlying data generating process.
Existing approaches to addressing shifts, such as concept drift adaptation, are limited by their reason-agnostic nature.
We propose self-healing machine learning (SHML) to overcome these limitations.
arXiv Detail & Related papers (2024-10-31T20:05:51Z) - Federated Bayesian Deep Learning: The Application of Statistical Aggregation Methods to Bayesian Models [0.9940108090221528]
Aggregation strategies have been developed to pool or fuse the weights and biases of distributed deterministic models.
We show that simple application of the aggregation methods associated with FL schemes for deterministic models is either impossible or results in sub-optimal performance.
arXiv Detail & Related papers (2024-03-22T15:02:24Z) - Weakly supervised covariance matrices alignment through Stiefel matrices
estimation for MEG applications [64.20396555814513]
This paper introduces a novel domain adaptation technique for time series data, called Mixing model Stiefel Adaptation (MSA)
We exploit abundant unlabeled data in the target domain to ensure effective prediction by establishing pairwise correspondence with equivalent signal variances between domains.
MSA outperforms recent methods in brain-age regression with task variations using magnetoencephalography (MEG) signals from the Cam-CAN dataset.
arXiv Detail & Related papers (2024-01-24T19:04:49Z) - Modelling Cellular Perturbations with the Sparse Additive Mechanism
Shift Variational Autoencoder [6.352775857356592]
We propose the Sparse Additive Mechanism Shift Variational Autoencoder, SAMS-VAE, to combine compositionality, disentanglement, and interpretability for perturbation models.
SAMS-VAE models the latent state of a perturbed sample as the sum of a local latent variable capturing sample-specific variation and sparse global variables of latent intervention effects.
We evaluate SAMS-VAE both and qualitatively on a range of tasks using two popular single cell sequencing datasets.
arXiv Detail & Related papers (2023-11-05T23:37:31Z) - Universal Semi-supervised Model Adaptation via Collaborative Consistency
Training [92.52892510093037]
We introduce a realistic and challenging domain adaptation problem called Universal Semi-supervised Model Adaptation (USMA)
We propose a collaborative consistency training framework that regularizes the prediction consistency between two models.
Experimental results demonstrate the effectiveness of our method on several benchmark datasets.
arXiv Detail & Related papers (2023-07-07T08:19:40Z) - Incorporating Domain Knowledge in Deep Neural Networks for Discrete
Choice Models [0.5801044612920815]
This paper proposes a framework that expands the potential of data-driven approaches for DCM.
It includes pseudo data samples that represent required relationships and a loss function that measures their fulfillment.
A case study demonstrates the potential of this framework for discrete choice analysis.
arXiv Detail & Related papers (2023-05-30T12:53:55Z) - Variable Importance Matching for Causal Inference [73.25504313552516]
We describe a general framework called Model-to-Match that achieves these goals.
Model-to-Match uses variable importance measurements to construct a distance metric.
We operationalize the Model-to-Match framework with LASSO.
arXiv Detail & Related papers (2023-02-23T00:43:03Z) - Bayesian Additive Main Effects and Multiplicative Interaction Models
using Tensor Regression for Multi-environmental Trials [0.0]
We propose a Bayesian tensor regression model to accommodate the effect of multiple factors on phenotype prediction.
We adopt a set of prior distributions that resolve identifiability issues that may arise between the parameters in the model.
We explore the applicability of our model by analysing real-world data related to wheat production across Ireland from 2010 to 2019.
arXiv Detail & Related papers (2023-01-09T19:54:50Z) - The m-connecting imset and factorization for ADMG models [10.839217026568784]
Acyclic directed mixed graph (ADMG) models characterize margins of DAG models.
ADMG models have not seen wide-spread use due to their complexity and a shortage of statistical tools for their analysis.
We introduce the m-connecting imset which provides an alternative representation for the independence models induced by ADMGs.
arXiv Detail & Related papers (2022-07-18T22:29:15Z) - Momentum Pseudo-Labeling for Semi-Supervised Speech Recognition [55.362258027878966]
We present momentum pseudo-labeling (MPL) as a simple yet effective strategy for semi-supervised speech recognition.
MPL consists of a pair of online and offline models that interact and learn from each other, inspired by the mean teacher method.
The experimental results demonstrate that MPL effectively improves over the base model and is scalable to different semi-supervised scenarios.
arXiv Detail & Related papers (2021-06-16T16:24:55Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
This paper investigates the problem of learning robust, generalizable prediction models from a combination of datasets.
Part of the challenge of learning robust models lies in the influence of unobserved confounders.
We demonstrate the empirical performance of our approach on healthcare data from different modalities.
arXiv Detail & Related papers (2020-07-21T08:18:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.