Quality In / Quality Out: Data quality more relevant than model choice in anomaly detection with the UGR'16
- URL: http://arxiv.org/abs/2305.19770v2
- Date: Thu, 05 Dec 2024 07:46:11 GMT
- Title: Quality In / Quality Out: Data quality more relevant than model choice in anomaly detection with the UGR'16
- Authors: José Camacho, Katarzyna Wasielewska, Pablo Espinosa, Marta Fuentes-García,
- Abstract summary: We show that relatively minor modifications on a benchmark dataset cause significantly more impact on model performance than the specific ML technique considered.
We also show that the measured model performance is uncertain, as a result of labelling inaccuracies.
- Score: 0.29998889086656577
- License:
- Abstract: Autonomous or self-driving networks are expected to provide a solution to the myriad of extremely demanding new applications with minimal human supervision. For this purpose, the community relies on the development of new Machine Learning (ML) models and techniques. %, like the celebrated Deep Learning (DL). However, ML can only be as good as the data it is fitted with, and data quality is an elusive concept difficult to assess. In this paper, we show that relatively minor modifications on a benchmark dataset (UGR'16, a flow-based real-traffic dataset for anomaly detection) cause significantly more impact on model performance than the specific ML technique considered. We also show that the measured model performance is uncertain, as a result of labelling inaccuracies. Our findings illustrate that the widely adopted approach of comparing a set of models in terms of performance results (e.g., in terms of accuracy or ROC curves) may lead to incorrect conclusions when done without a proper understanding of dataset biases and sensitivity. We contribute a methodology to interpret a model response that can be useful for this understanding.
Related papers
- Linear Discriminant Analysis in Credit Scoring: A Transparent Hybrid Model Approach [9.88281854509076]
We implement Linear Discriminant Analysis (LDA) as a feature reduction technique, which reduces the burden of the models complexity.
Our hybrid model, XG-DNN, outperformed other models with the highest accuracy of 99.45% and a 99% F1 score with LDA.
To interpret model decisions, we have applied 2 different explainable AI techniques named LIME (local) and Morris Sensitivity Analysis (global)
arXiv Detail & Related papers (2024-12-05T14:21:18Z) - Querying Easily Flip-flopped Samples for Deep Active Learning [63.62397322172216]
Active learning is a machine learning paradigm that aims to improve the performance of a model by strategically selecting and querying unlabeled data.
One effective selection strategy is to base it on the model's predictive uncertainty, which can be interpreted as a measure of how informative a sample is.
This paper proposes the it least disagree metric (LDM) as the smallest probability of disagreement of the predicted label.
arXiv Detail & Related papers (2024-01-18T08:12:23Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - Towards Better Modeling with Missing Data: A Contrastive Learning-based
Visual Analytics Perspective [7.577040836988683]
Missing data can pose a challenge for machine learning (ML) modeling.
Current approaches are categorized into feature imputation and label prediction.
This study proposes a Contrastive Learning framework to model observed data with missing values.
arXiv Detail & Related papers (2023-09-18T13:16:24Z) - Non-Invasive Fairness in Learning through the Lens of Data Drift [88.37640805363317]
We show how to improve the fairness of Machine Learning models without altering the data or the learning algorithm.
We use a simple but key insight: the divergence of trends between different populations, and, consecutively, between a learned model and minority populations, is analogous to data drift.
We explore two strategies (model-splitting and reweighing) to resolve this drift, aiming to improve the overall conformance of models to the underlying data.
arXiv Detail & Related papers (2023-03-30T17:30:42Z) - A prediction and behavioural analysis of machine learning methods for
modelling travel mode choice [0.26249027950824505]
We conduct a systematic comparison of different modelling approaches, across multiple modelling problems, in terms of the key factors likely to affect model choice.
Results indicate that the models with the highest disaggregate predictive performance provide poorer estimates of behavioural indicators and aggregate mode shares.
It is also observed that the MNL model performs robustly in a variety of situations, though ML techniques can improve the estimates of behavioural indices such as Willingness to Pay.
arXiv Detail & Related papers (2023-01-11T11:10:32Z) - Building Robust Machine Learning Models for Small Chemical Science Data:
The Case of Shear Viscosity [3.4761212729163313]
We train several Machine Learning models to predict the shear viscosity of a Lennard-Jones (LJ) fluid.
Specifically, the issues related to model selection, performance estimation and uncertainty quantification were investigated.
arXiv Detail & Related papers (2022-08-23T07:33:14Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Complementary Ensemble Learning [1.90365714903665]
We derive a technique to improve performance of state-of-the-art deep learning models.
Specifically, we train auxiliary models which are able to complement state-of-the-art model uncertainty.
arXiv Detail & Related papers (2021-11-09T03:23:05Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - How Training Data Impacts Performance in Learning-based Control [67.7875109298865]
This paper derives an analytical relationship between the density of the training data and the control performance.
We formulate a quality measure for the data set, which we refer to as $rho$-gap.
We show how the $rho$-gap can be applied to a feedback linearizing control law.
arXiv Detail & Related papers (2020-05-25T12:13:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.