論文の概要: Towards Explainable Automated Neuroanatomy
- arxiv url: http://arxiv.org/abs/2404.05814v1
- Date: Mon, 8 Apr 2024 18:36:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 18:48:28.523660
- Title: Towards Explainable Automated Neuroanatomy
- Title(参考訳): 説明可能な自律神経解剖学を目指して
- Authors: Kui Qian, Litao Qiao, Beth Friedman, Edward O'Donnell, David Kleinfeld, Yoav Freund,
- Abstract要約: 脳組織の微細構造を定量化する新しい方法を提案する。
これは、細胞の形状を分析することによって得られる解釈可能な特徴の自動認識に基づいている。
- 参考スコア(独自算出の注目度): 2.550915739937055
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel method for quantifying the microscopic structure of brain tissue. It is based on the automated recognition of interpretable features obtained by analyzing the shapes of cells. This contrasts with prevailing methods of brain anatomical analysis in two ways. First, contemporary methods use gray-scale values derived from smoothed version of the anatomical images, which dissipated valuable information from the texture of the images. Second, contemporary analysis uses the output of black-box Convolutional Neural Networks, while our system makes decisions based on interpretable features obtained by analyzing the shapes of individual cells. An important benefit of this open-box approach is that the anatomist can understand and correct the decisions made by the computer. Our proposed system can accurately localize and identify existing brain structures. This can be used to align and coregistar brains and will facilitate connectomic studies for reverse engineering of brain circuitry.
- Abstract(参考訳): 脳組織の微細構造を定量化する新しい方法を提案する。
これは、細胞の形状を分析することによって得られる解釈可能な特徴の自動認識に基づいている。
これは、脳解剖学的分析の一般的な方法とは2つの点で対照的である。
まず,解剖学的画像のスムーズ化バージョンから得られたグレースケールの値を用いて,画像のテクスチャから貴重な情報を抽出する。
第二に、現代の分析では、ブラックボックスの畳み込みニューラルネットワークの出力を用いており、一方、本システムは、個々の細胞の形状を分析して得られる解釈可能な特徴に基づいて決定を行う。
このオープンボックスアプローチの重要な利点は、解剖学者がコンピュータによってなされた決定を理解し、修正できることである。
提案システムは,既存の脳構造を正確に同定する。
これは脳のアライメントとコアギスターに利用することができ、脳回路のリバースエンジニアリングのためのコネクトロミクス研究を促進する。
関連論文リスト
- Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
本稿では,脳MRIにKGPL(Knowledge-Guided Prompt Learning)を用いた2段階のセグメンテーションフレームワークを提案する。
具体的には,大規模データセットと準最適ラベルを用いたトレーニング前セグメンテーションモデルについて述べる。
知識的プロンプトの導入は、解剖学的多様性と生物学的プロセスの間の意味的関係を捉えている。
論文 参考訳(メタデータ) (2024-07-31T04:32:43Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - NCIS: Deep Color Gradient Maps Regression and Three-Class Pixel
Classification for Enhanced Neuronal Cell Instance Segmentation in
Nissl-Stained Histological Images [0.5273938705774914]
本稿では,Nissl-stained histological image of the brainにおいて,単一神経細胞を自動分離するエンド・ツー・エンドの枠組みを提案する。
エンコーダとしてEfficientNetと2つのデコードブランチを備えたU-Netライクなアーキテクチャを用いて、4つの勾配カラーマップを復元し、ピクセルをタッチセル、細胞体、背景の間の輪郭に分類する。
この方法は大脳皮質と小脳の画像でテストされ、最近の深層学習による細胞のインスタンス分割のアプローチよりも優れています。
論文 参考訳(メタデータ) (2023-06-27T20:22:04Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - Analysis of Explainable Artificial Intelligence Methods on Medical Image
Classification [0.0]
画像分類などのコンピュータビジョンタスクにおけるディープラーニングの利用は、そのようなシステムの性能を急速に向上させてきた。
医用画像分類システムは、精度が高く、多くのタスクにおいてヒトの医師と同等に近いため、採用されている。
ブラックボックスモデルに関する洞察を得るために使用されている研究技術は、説明可能な人工知能(XAI)の分野にある。
論文 参考訳(メタデータ) (2022-12-10T06:17:43Z) - Automatic Quantitative Analysis of Brain Organoids via Deep Learning [0.0]
そこで本研究では,異なる蛍光でタグ付けされた脳オルガノイドスライスチャネルの自動解析法を提案する。
実験の結果,野生型と変異型脳性オルガノイドとの明らかな相違が認められた。
論文 参考訳(メタデータ) (2022-11-01T21:10:28Z) - Brain Cortical Functional Gradients Predict Cortical Folding Patterns
via Attention Mesh Convolution [51.333918985340425]
我々は,脳の皮質ジャイロ-サルカル分割図を予測するための新しいアテンションメッシュ畳み込みモデルを開発した。
実験の結果,我々のモデルによる予測性能は,他の最先端モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-05-21T14:08:53Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
脳ネットワーク上のグラフマイニングは、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を促進する可能性がある。
本稿では,Deep Signed Brain Networks (DSBN) と呼ばれる新しいグラフ学習フレームワークを提案する。
臨床表現型および神経変性疾患予測の枠組みを,2つの独立した公開データセットを用いて検証した。
論文 参考訳(メタデータ) (2022-05-06T03:45:36Z) - An explainability framework for cortical surface-based deep learning [110.83289076967895]
我々は,皮質表面の深層学習のためのフレームワークを開発した。
まず,表面データに摂動に基づくアプローチを適用した。
我々の説明可能性フレームワークは,重要な特徴とその空間的位置を識別できるだけでなく,信頼性と有効性も示している。
論文 参考訳(メタデータ) (2022-03-15T23:16:49Z) - Contrastive Representation Learning for Whole Brain Cytoarchitectonic
Mapping in Histological Human Brain Sections [0.4588028371034407]
本稿では,顕微鏡画像パッチを頑健な微細構造特徴に符号化するための対照的な学習手法を提案する。
この学習課題を用いて事前学習したモデルは、最近提案された補助課題に基づいて事前学習したモデルと同様に、スクラッチから訓練したモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-11-25T16:44:23Z) - Convolutional Neural Networks for cytoarchitectonic brain mapping at
large scale [0.33727511459109777]
今回我々は,ヒト後脳の多数の細胞体染色組織における細胞構造学的領域をマッピングするための新しいワークフローを提案する。
これはDeep Convolutional Neural Network (CNN)に基づいており、アノテーション付きの一対のセクションイメージに基づいてトレーニングされており、その間に多数の注釈のないセクションがある。
新しいワークフローは、セクションの3D再構成を必要とせず、組織学的アーティファクトに対して堅牢である。
論文 参考訳(メタデータ) (2020-11-25T16:25:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。