Witnessing Quantum Entanglement Using Resonant Inelastic X-ray Scattering
- URL: http://arxiv.org/abs/2404.05850v1
- Date: Mon, 8 Apr 2024 20:31:41 GMT
- Title: Witnessing Quantum Entanglement Using Resonant Inelastic X-ray Scattering
- Authors: Tianhao Ren, Yao Shen, Sophia F. R. TenHuisen, Jennifer Sears, Wei He, Mary H. Upton, Diego Casa, Petra Becker, Matteo Mitrano, Mark P. M. Dean, Robert M. Konik,
- Abstract summary: entanglement is a central ingredient in our understanding of quantum many-body systems and an essential resource for quantum technologies.
We devise a method to extract the quantum Fisher information (QFI) from non-Hermitian operators and formulate an entanglement witness for resonant inelastic x-ray scattering (RIXS)
We find that entanglement is challenging to detect under standard conditions, but that it could be achieved by analyzing the outgoing x-ray polarization or via specific choices of momentum and energy.
- Score: 3.2509613040125878
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although entanglement is both a central ingredient in our understanding of quantum many-body systems and an essential resource for quantum technologies, we only have a limited ability to quantify entanglement in real quantum materials. Thus far, entanglement metrology in quantum materials has been limited to measurements involving Hermitian operators, such as the detection of spin entanglement using inelastic neutron scattering. Here, we devise a method to extract the quantum Fisher information (QFI) from non-Hermitian operators and formulate an entanglement witness for resonant inelastic x-ray scattering (RIXS). Our approach is then applied to the model iridate dimer system Ba$_3$CeIr$_2$O$_9$ and used to directly test for entanglement of the electronic orbitals between neighboring Ir sites. We find that entanglement is challenging to detect under standard conditions, but that it could be achieved by analyzing the outgoing x-ray polarization or via specific choices of momentum and energy. Our protocol provides a new handle for entanglement detection, which offers routes to related types of entanglement witness (such as orbitally-resolved measurements) and to the generalization to out-of-equilibrium settings accessed in ultrafast settings.
Related papers
- Simulating a quasiparticle on a quantum device [0.0]
We propose a variational approach to explore quasiparticle excitations in interacting quantum many-body systems.
We benchmark the proposed algorithm via numerical simulations performed on the one-dimension transverse field Ising chain.
We show that the localized quasiparticle states constructed with VQE contain accessible information on the full band of quasiparticles.
arXiv Detail & Related papers (2024-09-13T05:39:13Z) - Entanglement of photonic modes from a continuously driven two-level system [34.50067763557076]
We experimentally generate entangled photonic modes by continuously exciting a quantum emitter, a superconducting qubit, with a coherent drive.
We show that entanglement is generated between modes extracted from the two sidebands of the resonance fluorescence spectrum.
Our approach can be utilized to distribute entanglement at a high rate in various physical platforms.
arXiv Detail & Related papers (2024-07-10T18:48:41Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Exact Ansatz of Fermion-Boson Systems for a Quantum Device [5.915403570478968]
An exact ansatz for the eigenstate problem of mixed fermion-boson systems can be implemented on quantum devices.
Our results demonstrate that the CSE is a powerful tool in the development of quantum algorithms for solving general fermion-boson many-body problems.
arXiv Detail & Related papers (2024-02-19T16:38:57Z) - Mitigating Errors on Superconducting Quantum Processors through Fuzzy
Clustering [38.02852247910155]
A new Quantum Error Mitigation (QEM) technique uses Fuzzy C-Means clustering to specifically identify measurement error patterns.
We report a proof-of-principle validation of the technique on a 2-qubit register, obtained as a subset of a real NISQ 5-qubit superconducting quantum processor.
We demonstrate that the FCM-based QEM technique allows for reasonable improvement of the expectation values of single- and two-qubit gates based quantum circuits.
arXiv Detail & Related papers (2024-02-02T14:02:45Z) - Witnessing Light-Driven Entanglement using Time-Resolved Resonant
Inelastic X-Ray Scattering [8.180110565400524]
Characterizing and controlling entanglement in quantum materials is crucial for the development of next-generation quantum technologies.
We propose a systematic approach to quantify the time-dependent quantum Fisher information and entanglement depth of transient states of quantum materials.
Our work sets the stage for experimentally witnessing and controlling entanglement in light-driven quantum materials via ultrafast spectroscopic measurements.
arXiv Detail & Related papers (2022-09-06T08:13:15Z) - Mid-infrared homodyne balanced detector for quantum light
characterization [52.77024349608834]
We present the characterization of a novel balanced homodyne detector operating in the mid-infrared.
We discuss the experimental results with a view to possible applications to quantum technologies, such as free-space quantum communication.
arXiv Detail & Related papers (2021-03-16T11:08:50Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Quantifying and controlling entanglement in the quantum magnet
Cs$_2$CoCl$_4$ [0.0]
We implement a model-independent measurement protocol for entanglement based on three entanglement witnesses: one-tangle, two-tangle, and quantum Fisher information (QFI)
We perform high-resolution measurements on Cs$$ClCo$_4$, a close realization of the $S=1/2$ transverse-field XXZ spin chain.
Our results lay the foundation for a general entanglement detection protocol for quantum spin systems.
arXiv Detail & Related papers (2020-10-21T17:34:34Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - Quantum simulation of open quantum systems in heavy-ion collisions [0.0]
We present a framework to simulate the dynamics of hard probes such as heavy quarks or jets in a hot, strongly-coupled quark-gluon plasma (QGP) on a quantum computer.
Our work demonstrates the feasibility of simulating open quantum systems on current and near-term quantum devices.
arXiv Detail & Related papers (2020-10-07T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.