論文の概要: Inexact Simplification of Symbolic Regression Expressions with Locality-sensitive Hashing
- arxiv url: http://arxiv.org/abs/2404.05898v1
- Date: Mon, 8 Apr 2024 22:54:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 16:28:06.457742
- Title: Inexact Simplification of Symbolic Regression Expressions with Locality-sensitive Hashing
- Title(参考訳): 局所性に敏感なハッシュを用いた記号的回帰表現の不正確な単純化
- Authors: Guilherme Seidyo Imai Aldeia, Fabricio Olivetti de Franca, William G. La Cava,
- Abstract要約: シンボリック回帰は、データセットに正確に適合するパラメトリックモデルを検索し、単純さと解釈可能性の優先順位付けを行う。
高速な代数的単純化を適用することは、式を完全に単純化するものではなく、式のサイズや複雑さによって正確な方法が実現できない可能性がある。
局所性に敏感なハッシュ(LHS)を用いた効率的なメモ化を用いたSRの単純化と肥大化制御を提案する。
- 参考スコア(独自算出の注目度): 0.7373617024876725
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Symbolic regression (SR) searches for parametric models that accurately fit a dataset, prioritizing simplicity and interpretability. Despite this secondary objective, studies point out that the models are often overly complex due to redundant operations, introns, and bloat that arise during the iterative process, and can hinder the search with repeated exploration of bloated segments. Applying a fast heuristic algebraic simplification may not fully simplify the expression and exact methods can be infeasible depending on size or complexity of the expressions. We propose a novel agnostic simplification and bloat control for SR employing an efficient memoization with locality-sensitive hashing (LHS). The idea is that expressions and their sub-expressions traversed during the iterative simplification process are stored in a dictionary using LHS, enabling efficient retrieval of similar structures. We iterate through the expression, replacing subtrees with others of same hash if they result in a smaller expression. Empirical results shows that applying this simplification during evolution performs equal or better than without simplification in minimization of error, significantly reducing the number of nonlinear functions. This technique can learn simplification rules that work in general or for a specific problem, and improves convergence while reducing model complexity.
- Abstract(参考訳): シンボリック回帰(SR)は、データセットに正確に適合するパラメトリックモデルを探索し、単純さと解釈可能性の優先順位付けを行う。
この二次的な目的にもかかわらず、モデルはしばしば冗長な操作、イントロン、肥大により複雑であり、肥大した部分の探索を繰り返して探索を妨げる可能性があることを指摘する。
高速なヒューリスティックな代数的単純化を適用することは、式を単純化するものではなく、式のサイズや複雑さによって正確な方法が実現できない。
局所性に敏感なハッシュ (LHS) を用いた効率的なメモ化手法を用いて, SR の非依存的単純化と肥大化制御を提案する。
この考え方は, 反復的単純化過程における表現とその部分表現が, LHSを用いて辞書に格納され, 類似構造を効率的に検索できるというものである。
式を繰り返すことで、より小さな式が得られれば、サブツリーを同じハッシュの他のツリーに置き換えます。
実験結果から, 進化過程におけるこの単純化は, 誤差の最小化の単純化を伴わずに同等あるいはそれ以上に作用し, 非線形関数の数を著しく減少させることが示された。
この技術は、一般に、あるいは特定の問題のために働く単純化規則を学習し、モデルの複雑さを減らしながら収束を改善することができる。
関連論文リスト
- Ab initio nonparametric variable selection for scalable Symbolic Regression with large $p$ [2.222138965069487]
シンボリック回帰(SR)は、データの非線形関係を特徴付けるシンボリック表現を発見するための強力な手法である。
既存のSR法は、多くの入力変数を持つデータセットにスケールしないが、これは現代の科学的応用で一般的である。
本稿では,Ab初期非パラメトリック変数選択とSRを組み合わせたPAN+SRを提案する。
論文 参考訳(メタデータ) (2024-10-17T15:41:06Z) - The Inefficiency of Genetic Programming for Symbolic Regression -- Extended Version [0.0]
我々は,遺伝的プログラミングの探索挙動を,実用上は関係するが限定的な状況下での象徴的回帰のために分析する。
これにより、最良の表現を見つける成功確率を定量化できる。
遺伝的プログラミングの探索効率を意味的一意表現の空間におけるランダム探索と比較する。
論文 参考訳(メタデータ) (2024-04-26T09:49:32Z) - Deep Generative Symbolic Regression [83.04219479605801]
記号回帰は、データから簡潔な閉形式数学的方程式を発見することを目的としている。
既存の手法は、探索から強化学習まで、入力変数の数に応じてスケールできない。
本稿では,我々のフレームワークであるDeep Generative Symbolic Regressionのインスタンス化を提案する。
論文 参考訳(メタデータ) (2023-12-30T17:05:31Z) - BERM: Training the Balanced and Extractable Representation for Matching
to Improve Generalization Ability of Dense Retrieval [54.66399120084227]
本稿では,BERMと呼ばれるマッチング信号の取得により,高密度検索の一般化を改善する手法を提案する。
センス検索は、ドメイン内のラベル付きデータセットでトレーニングされた場合、第1段階の検索プロセスにおいて有望であることが示されている。
論文 参考訳(メタデータ) (2023-05-18T15:43:09Z) - Object Representations as Fixed Points: Training Iterative Refinement
Algorithms with Implicit Differentiation [88.14365009076907]
反復的洗練は表現学習に有用なパラダイムである。
トレーニングの安定性とトラクタビリティを向上させる暗黙の差別化アプローチを開発する。
論文 参考訳(メタデータ) (2022-07-02T10:00:35Z) - Information-Theoretic Generalization Bounds for Iterative
Semi-Supervised Learning [81.1071978288003]
特に,情報理論の原理を用いて,反復型SSLアルゴリズムのエミュレータ一般化誤差の振る舞いを理解することを目的とする。
我々の理論的結果は、クラス条件分散があまり大きくない場合、一般化誤差の上限は反復数とともに単調に減少するが、すぐに飽和することを示している。
論文 参考訳(メタデータ) (2021-10-03T05:38:49Z) - Symbolic Regression by Exhaustive Search: Reducing the Search Space
Using Syntactical Constraints and Efficient Semantic Structure Deduplication [2.055204980188575]
シンボリック回帰は、モデル構造に関する事前の知識が得られない産業シナリオにおいて、強力なシステム識別技術である。
この章では、これらの問題に対処するために特別に設計された決定論的シンボリック回帰アルゴリズムを紹介します。
全ての可能なモデルの有限列挙は、構造的制約と意味論的に等価な解を検出するキャッシング機構によって保証される。
論文 参考訳(メタデータ) (2021-09-28T17:47:51Z) - Investigating the Scalability and Biological Plausibility of the
Activation Relaxation Algorithm [62.997667081978825]
アクティベーション・リラクシエーション(AR)アルゴリズムは、誤りアルゴリズムのバックプロパゲーションを近似するためのシンプルでロバストなアプローチを提供する。
このアルゴリズムは、学習可能な後方重みセットを導入することにより、さらに単純化され、生物学的に検証可能であることを示す。
また、元のARアルゴリズム(凍結フィードフォワードパス)の別の生物学的に信じられない仮定が、パフォーマンスを損なうことなく緩和できるかどうかについても検討する。
論文 参考訳(メタデータ) (2020-10-13T08:02:38Z) - ASSET: A Dataset for Tuning and Evaluation of Sentence Simplification
Models with Multiple Rewriting Transformations [97.27005783856285]
本稿では,英語で文の単純化を評価するための新しいデータセットであるASSETを紹介する。
ASSETの単純化は、タスクの他の標準評価データセットと比較して、単純さの特徴を捉えるのに優れていることを示す。
論文 参考訳(メタデータ) (2020-05-01T16:44:54Z) - Semi-Supervised Text Simplification with Back-Translation and Asymmetric
Denoising Autoencoders [37.949101113934226]
テキスト単純化(TS)は、長い文を単純化した変種に言い換え、固有の意味を保ちながら表現する。
本研究では,TSタスクにおける大量の未ペアコーパスの活用方法について検討する。
本稿では,異なる複雑さを持つ文に対する非対称な記述法を提案する。
論文 参考訳(メタデータ) (2020-04-30T11:19:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。