The Hallucinations Leaderboard -- An Open Effort to Measure Hallucinations in Large Language Models
- URL: http://arxiv.org/abs/2404.05904v2
- Date: Wed, 17 Apr 2024 07:03:17 GMT
- Title: The Hallucinations Leaderboard -- An Open Effort to Measure Hallucinations in Large Language Models
- Authors: Giwon Hong, Aryo Pradipta Gema, Rohit Saxena, Xiaotang Du, Ping Nie, Yu Zhao, Laura Perez-Beltrachini, Max Ryabinin, Xuanli He, Clémentine Fourrier, Pasquale Minervini,
- Abstract summary: Large Language Models (LLMs) have transformed the Natural Language Processing (NLP) landscape with their remarkable ability to understand and generate human-like text.
However, these models are prone to hallucinations'' -- outputs that do not align with factual reality or the input context.
This paper introduces the Hallucinations Leaderboard, an open initiative to quantitatively measure and compare the tendency of each model to produce hallucinations.
- Score: 24.11077502209129
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Large Language Models (LLMs) have transformed the Natural Language Processing (NLP) landscape with their remarkable ability to understand and generate human-like text. However, these models are prone to ``hallucinations'' -- outputs that do not align with factual reality or the input context. This paper introduces the Hallucinations Leaderboard, an open initiative to quantitatively measure and compare the tendency of each model to produce hallucinations. The leaderboard uses a comprehensive set of benchmarks focusing on different aspects of hallucinations, such as factuality and faithfulness, across various tasks, including question-answering, summarisation, and reading comprehension. Our analysis provides insights into the performance of different models, guiding researchers and practitioners in choosing the most reliable models for their applications.
Related papers
- H-POPE: Hierarchical Polling-based Probing Evaluation of Hallucinations in Large Vision-Language Models [0.0]
We propose H-POPE, a coarse-to-fine-grained benchmark that assesses hallucinations in object existence and attributes.
Our evaluation shows that models are prone to hallucinations on object existence, and even more so on fine-grained attributes.
arXiv Detail & Related papers (2024-11-06T17:55:37Z) - Investigating the Role of Prompting and External Tools in Hallucination Rates of Large Language Models [0.0]
Large Language Models (LLMs) are powerful computational models trained on extensive corpora of human-readable text, enabling them to perform general-purpose language understanding and generation.
Despite these successes, LLMs often produce inaccuracies, commonly referred to as hallucinations.
This paper provides an empirical evaluation of different prompting strategies and frameworks aimed at reducing hallucinations in LLMs.
arXiv Detail & Related papers (2024-10-25T08:34:53Z) - Knowledge Overshadowing Causes Amalgamated Hallucination in Large Language Models [65.32990889402927]
We coin this phenomenon as knowledge overshadowing''
We show that the hallucination rate grows with both the imbalance ratio and the length of dominant condition description.
We propose to utilize overshadowing conditions as a signal to catch hallucination before it is produced.
arXiv Detail & Related papers (2024-07-10T20:37:42Z) - VideoHallucer: Evaluating Intrinsic and Extrinsic Hallucinations in Large Video-Language Models [59.05674402770661]
This work introduces VideoHallucer, the first comprehensive benchmark for hallucination detection in large video-language models (LVLMs)
VideoHallucer categorizes hallucinations into two main types: intrinsic and extrinsic, offering further subcategories for detailed analysis.
arXiv Detail & Related papers (2024-06-24T06:21:59Z) - Alleviating Hallucinations in Large Vision-Language Models through Hallucination-Induced Optimization [123.54980913741828]
Large Visual Language Models (LVLMs) have demonstrated exceptional abilities in understanding multimodal data.
They invariably suffer from hallucinations, leading to a disconnect between the generated text and the corresponding images.
Almost all current visual contrastive decoding methods attempt to mitigate these hallucinations by introducing visual uncertainty information.
However, they struggle to precisely induce the hallucinatory tokens, which severely limits their effectiveness in mitigating hallucinations.
arXiv Detail & Related papers (2024-05-24T08:46:31Z) - Hallucination Diversity-Aware Active Learning for Text Summarization [46.00645048690819]
Large Language Models (LLMs) have shown propensity to generate hallucinated outputs, i.e., texts that are factually incorrect or unsupported.
Existing methods for alleviating hallucinations typically require costly human annotations to identify and correct hallucinations in LLM outputs.
We propose the first active learning framework to alleviate LLM hallucinations, reducing costly human annotations of hallucination needed.
arXiv Detail & Related papers (2024-04-02T02:30:27Z) - Quantity Matters: Towards Assessing and Mitigating Number Hallucination in Large Vision-Language Models [57.42800112251644]
We focus on a specific type of hallucination-number hallucination, referring to models incorrectly identifying the number of certain objects in pictures.
We devise a training approach aimed at improving consistency to reduce number hallucinations, which leads to an 8% enhancement in performance over direct finetuning methods.
arXiv Detail & Related papers (2024-03-03T02:31:11Z) - Fine-grained Hallucination Detection and Editing for Language Models [109.56911670376932]
Large language models (LMs) are prone to generate factual errors, which are often called hallucinations.
We introduce a comprehensive taxonomy of hallucinations and argue that hallucinations manifest in diverse forms.
We propose a novel task of automatic fine-grained hallucination detection and construct a new evaluation benchmark, FavaBench.
arXiv Detail & Related papers (2024-01-12T19:02:48Z) - Don't Believe Everything You Read: Enhancing Summarization Interpretability through Automatic Identification of Hallucinations in Large Language Models [0.0]
This paper takes a deep dive into Large Language Models (LLMs) behavior with respect to hallucinations.
It defines a token-level approach to identifying different kinds of hallucinations, and further utilizes this token-level tagging to improve the interpretability and faithfulness of LLMs.
arXiv Detail & Related papers (2023-12-22T00:31:46Z) - AutoHall: Automated Hallucination Dataset Generation for Large Language Models [56.92068213969036]
This paper introduces a method for automatically constructing model-specific hallucination datasets based on existing fact-checking datasets called AutoHall.
We also propose a zero-resource and black-box hallucination detection method based on self-contradiction.
arXiv Detail & Related papers (2023-09-30T05:20:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.