UniBEVFusion: Unified Radar-Vision BEVFusion for 3D Object Detection
- URL: http://arxiv.org/abs/2409.14751v1
- Date: Mon, 23 Sep 2024 06:57:27 GMT
- Title: UniBEVFusion: Unified Radar-Vision BEVFusion for 3D Object Detection
- Authors: Haocheng Zhao, Runwei Guan, Taoyu Wu, Ka Lok Man, Limin Yu, Yutao Yue,
- Abstract summary: Many radar-vision fusion models treat radar as a sparse LiDAR, underutilizing radar-specific information.
We propose the Radar Depth Lift-Splat-Shoot (RDL) module, which integrates radar-specific data into the depth prediction process.
We also introduce a Unified Feature Fusion (UFF) approach that extracts BEV features across different modalities.
- Score: 2.123197540438989
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 4D millimeter-wave (MMW) radar, which provides both height information and dense point cloud data over 3D MMW radar, has become increasingly popular in 3D object detection. In recent years, radar-vision fusion models have demonstrated performance close to that of LiDAR-based models, offering advantages in terms of lower hardware costs and better resilience in extreme conditions. However, many radar-vision fusion models treat radar as a sparse LiDAR, underutilizing radar-specific information. Additionally, these multi-modal networks are often sensitive to the failure of a single modality, particularly vision. To address these challenges, we propose the Radar Depth Lift-Splat-Shoot (RDL) module, which integrates radar-specific data into the depth prediction process, enhancing the quality of visual Bird-Eye View (BEV) features. We further introduce a Unified Feature Fusion (UFF) approach that extracts BEV features across different modalities using shared module. To assess the robustness of multi-modal models, we develop a novel Failure Test (FT) ablation experiment, which simulates vision modality failure by injecting Gaussian noise. We conduct extensive experiments on the View-of-Delft (VoD) and TJ4D datasets. The results demonstrate that our proposed Unified BEVFusion (UniBEVFusion) network significantly outperforms state-of-the-art models on the TJ4D dataset, with improvements of 1.44 in 3D and 1.72 in BEV object detection accuracy.
Related papers
- V2X-R: Cooperative LiDAR-4D Radar Fusion for 3D Object Detection with Denoising Diffusion [43.55805087515543]
We present V2X-R, the first simulated V2X dataset incorporating LiDAR, camera, and 4D radar.
V2X-R contains 12,079 scenarios with 37,727 frames of LiDAR and 4D radar point clouds, 150,908 images, and 170,859 annotated 3D vehicle bounding boxes.
We propose a novel cooperative LiDAR-4D radar fusion pipeline for 3D object detection and implement it with various fusion strategies.
arXiv Detail & Related papers (2024-11-13T07:41:47Z) - RCBEVDet++: Toward High-accuracy Radar-Camera Fusion 3D Perception Network [34.45694077040797]
We present a radar-camera fusion 3D object detection framework called BEEVDet.
RadarBEVNet encodes sparse radar points into a dense bird's-eye-view feature.
Our method achieves state-of-the-art radar-camera fusion results in 3D object detection, BEV semantic segmentation, and 3D multi-object tracking tasks.
arXiv Detail & Related papers (2024-09-08T05:14:27Z) - VFMM3D: Releasing the Potential of Image by Vision Foundation Model for Monocular 3D Object Detection [80.62052650370416]
monocular 3D object detection holds significant importance across various applications, including autonomous driving and robotics.
In this paper, we present VFMM3D, an innovative framework that leverages the capabilities of Vision Foundation Models (VFMs) to accurately transform single-view images into LiDAR point cloud representations.
arXiv Detail & Related papers (2024-04-15T03:12:12Z) - Diffusion-Based Point Cloud Super-Resolution for mmWave Radar Data [8.552647576661174]
millimeter-wave radar sensor maintains stable performance under adverse environmental conditions.
Radar point clouds are relatively sparse and contain massive ghost points.
We propose a novel point cloud super-resolution approach for 3D mmWave radar data, named Radar-diffusion.
arXiv Detail & Related papers (2024-04-09T04:41:05Z) - Reviewing 3D Object Detectors in the Context of High-Resolution 3+1D
Radar [0.7279730418361995]
High-resolution imaging 4D (3+1D) radar sensors have deep learning-based radar perception research.
We investigate deep learning-based models operating on radar point clouds for 3D object detection.
arXiv Detail & Related papers (2023-08-10T10:10:43Z) - SMURF: Spatial Multi-Representation Fusion for 3D Object Detection with
4D Imaging Radar [12.842457981088378]
This paper introduces spatial multi-representation fusion (SMURF), a novel approach to 3D object detection using a single 4D imaging radar.
SMURF mitigates measurement inaccuracy caused by limited angular resolution and multi-path propagation of radar signals.
Experimental evaluations on View-of-Delft (VoD) and TJ4DRadSet datasets demonstrate the effectiveness and generalization ability of SMURF.
arXiv Detail & Related papers (2023-07-20T11:33:46Z) - Bi-LRFusion: Bi-Directional LiDAR-Radar Fusion for 3D Dynamic Object
Detection [78.59426158981108]
We introduce a bi-directional LiDAR-Radar fusion framework, termed Bi-LRFusion, to tackle the challenges and improve 3D detection for dynamic objects.
We conduct extensive experiments on nuScenes and ORR datasets, and show that our Bi-LRFusion achieves state-of-the-art performance for detecting dynamic objects.
arXiv Detail & Related papers (2023-06-02T10:57:41Z) - Boosting 3D Object Detection by Simulating Multimodality on Point Clouds [51.87740119160152]
This paper presents a new approach to boost a single-modality (LiDAR) 3D object detector by teaching it to simulate features and responses that follow a multi-modality (LiDAR-image) detector.
The approach needs LiDAR-image data only when training the single-modality detector, and once well-trained, it only needs LiDAR data at inference.
Experimental results on the nuScenes dataset show that our approach outperforms all SOTA LiDAR-only 3D detectors.
arXiv Detail & Related papers (2022-06-30T01:44:30Z) - Fully Convolutional One-Stage 3D Object Detection on LiDAR Range Images [96.66271207089096]
FCOS-LiDAR is a fully convolutional one-stage 3D object detector for LiDAR point clouds of autonomous driving scenes.
We show that an RV-based 3D detector with standard 2D convolutions alone can achieve comparable performance to state-of-the-art BEV-based detectors.
arXiv Detail & Related papers (2022-05-27T05:42:16Z) - EPNet++: Cascade Bi-directional Fusion for Multi-Modal 3D Object
Detection [56.03081616213012]
We propose EPNet++ for multi-modal 3D object detection by introducing a novel Cascade Bi-directional Fusion(CB-Fusion) module.
The proposed CB-Fusion module boosts the plentiful semantic information of point features with the image features in a cascade bi-directional interaction fusion manner.
The experiment results on the KITTI, JRDB and SUN-RGBD datasets demonstrate the superiority of EPNet++ over the state-of-the-art methods.
arXiv Detail & Related papers (2021-12-21T10:48:34Z) - SGM3D: Stereo Guided Monocular 3D Object Detection [62.11858392862551]
We propose a stereo-guided monocular 3D object detection network, termed SGM3D.
We exploit robust 3D features extracted from stereo images to enhance the features learned from the monocular image.
Our method can be integrated into many other monocular approaches to boost performance without introducing any extra computational cost.
arXiv Detail & Related papers (2021-12-03T13:57:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.