Unified Entropy Optimization for Open-Set Test-Time Adaptation
- URL: http://arxiv.org/abs/2404.06065v1
- Date: Tue, 9 Apr 2024 07:08:00 GMT
- Title: Unified Entropy Optimization for Open-Set Test-Time Adaptation
- Authors: Zhengqing Gao, Xu-Yao Zhang, Cheng-Lin Liu,
- Abstract summary: Test-time adaptation (TTA) aims at adapting a model pre-trained on the labeled source domain to the unlabeled target domain.
Many state-of-the-art closed-set TTA methods perform poorly when applied to open-set scenarios.
We propose a simple but effective framework called unified entropy optimization (UniEnt)
- Score: 40.111891407629
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Test-time adaptation (TTA) aims at adapting a model pre-trained on the labeled source domain to the unlabeled target domain. Existing methods usually focus on improving TTA performance under covariate shifts, while neglecting semantic shifts. In this paper, we delve into a realistic open-set TTA setting where the target domain may contain samples from unknown classes. Many state-of-the-art closed-set TTA methods perform poorly when applied to open-set scenarios, which can be attributed to the inaccurate estimation of data distribution and model confidence. To address these issues, we propose a simple but effective framework called unified entropy optimization (UniEnt), which is capable of simultaneously adapting to covariate-shifted in-distribution (csID) data and detecting covariate-shifted out-of-distribution (csOOD) data. Specifically, UniEnt first mines pseudo-csID and pseudo-csOOD samples from test data, followed by entropy minimization on the pseudo-csID data and entropy maximization on the pseudo-csOOD data. Furthermore, we introduce UniEnt+ to alleviate the noise caused by hard data partition leveraging sample-level confidence. Extensive experiments on CIFAR benchmarks and Tiny-ImageNet-C show the superiority of our framework. The code is available at https://github.com/gaozhengqing/UniEnt
Related papers
- ETAGE: Enhanced Test Time Adaptation with Integrated Entropy and Gradient Norms for Robust Model Performance [18.055032898349438]
Test time adaptation (TTA) equips deep learning models to handle unseen test data that deviates from the training distribution.
We introduce ETAGE, a refined TTA method that integrates entropy minimization with gradient norms and PLPD.
Our method prioritizes samples that are less likely to cause instability by combining high entropy with high gradient norms out of adaptation.
arXiv Detail & Related papers (2024-09-14T01:25:52Z) - Distribution Alignment for Fully Test-Time Adaptation with Dynamic Online Data Streams [19.921480334048756]
Test-Time Adaptation (TTA) enables adaptation and inference in test data streams with domain shifts from the source.
We propose a novel Distribution Alignment loss for TTA.
We surpass existing methods in non-i.i.d. scenarios and maintain competitive performance under the ideal i.i.d. assumption.
arXiv Detail & Related papers (2024-07-16T19:33:23Z) - Self-Supervised Dataset Distillation for Transfer Learning [77.4714995131992]
We propose a novel problem of distilling an unlabeled dataset into a set of small synthetic samples for efficient self-supervised learning (SSL)
We first prove that a gradient of synthetic samples with respect to a SSL objective in naive bilevel optimization is textitbiased due to randomness originating from data augmentations or masking.
We empirically validate the effectiveness of our method on various applications involving transfer learning.
arXiv Detail & Related papers (2023-10-10T10:48:52Z) - AR-TTA: A Simple Method for Real-World Continual Test-Time Adaptation [1.4530711901349282]
We propose to validate test-time adaptation methods using datasets for autonomous driving, namely CLAD-C and SHIFT.
We observe that current test-time adaptation methods struggle to effectively handle varying degrees of domain shift.
We enhance the well-established self-training framework by incorporating a small memory buffer to increase model stability.
arXiv Detail & Related papers (2023-09-18T19:34:23Z) - pSTarC: Pseudo Source Guided Target Clustering for Fully Test-Time
Adaptation [15.621092104244003]
Test Time Adaptation (TTA) is a pivotal concept in machine learning, enabling models to perform well in real-world scenarios.
We propose a novel approach called pseudo Source guided Target Clustering (pSTarC) addressing the relatively unexplored area of TTA under real-world domain shifts.
arXiv Detail & Related papers (2023-09-02T07:13:47Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) aims to connect the good ends of both worlds while bypassing their limitations.
DaC divides the target data into source-like and target-specific samples, where either group of samples is treated with tailored goals.
We further align the source-like domain with the target-specific samples using a memory bank-based Maximum Mean Discrepancy (MMD) loss to reduce the distribution mismatch.
arXiv Detail & Related papers (2022-11-12T09:21:49Z) - Domain Alignment Meets Fully Test-Time Adaptation [24.546705919244936]
A foundational requirement of a deployed ML model is to generalize to data drawn from a testing distribution that is different from training.
In this paper, we focus on a challenging variant of this problem, where access to the original source data is restricted.
We propose a new approach, CATTAn, that bridges UDA and FTTA, by relaxing the need to access entire source data.
arXiv Detail & Related papers (2022-07-09T03:17:19Z) - CAFA: Class-Aware Feature Alignment for Test-Time Adaptation [50.26963784271912]
Test-time adaptation (TTA) aims to address this challenge by adapting a model to unlabeled data at test time.
We propose a simple yet effective feature alignment loss, termed as Class-Aware Feature Alignment (CAFA), which simultaneously encourages a model to learn target representations in a class-discriminative manner.
arXiv Detail & Related papers (2022-06-01T03:02:07Z) - Efficient Test-Time Model Adaptation without Forgetting [60.36499845014649]
Test-time adaptation seeks to tackle potential distribution shifts between training and testing data.
We propose an active sample selection criterion to identify reliable and non-redundant samples.
We also introduce a Fisher regularizer to constrain important model parameters from drastic changes.
arXiv Detail & Related papers (2022-04-06T06:39:40Z) - Listen, Adapt, Better WER: Source-free Single-utterance Test-time
Adaptation for Automatic Speech Recognition [65.84978547406753]
Test-time Adaptation aims to adapt the model trained on source domains to yield better predictions for test samples.
Single-Utterance Test-time Adaptation (SUTA) is the first TTA study in speech area to our best knowledge.
arXiv Detail & Related papers (2022-03-27T06:38:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.