Everything to the Synthetic: Diffusion-driven Test-time Adaptation via Synthetic-Domain Alignment
- URL: http://arxiv.org/abs/2406.04295v2
- Date: Sun, 15 Dec 2024 13:53:52 GMT
- Title: Everything to the Synthetic: Diffusion-driven Test-time Adaptation via Synthetic-Domain Alignment
- Authors: Jiayi Guo, Junhao Zhao, Chaoqun Du, Yulin Wang, Chunjiang Ge, Zanlin Ni, Shiji Song, Humphrey Shi, Gao Huang,
- Abstract summary: Test-time adaptation (TTA) aims to improve the performance of source-domain pre-trained models on previously unseen, shifted target domains.
Traditional TTA methods primarily adapt model weights based on target data streams, making model performance sensitive to the amount and order of target data.
The recently proposed diffusion-driven TTA methods mitigate this by adapting model inputs instead of weights, where an unconditional diffusion model, trained on the source domain, transforms target-domain data into a synthetic domain that is expected to approximate the source domain.
- Score: 81.78901060731269
- License:
- Abstract: Test-time adaptation (TTA) aims to improve the performance of source-domain pre-trained models on previously unseen, shifted target domains. Traditional TTA methods primarily adapt model weights based on target data streams, making model performance sensitive to the amount and order of target data. The recently proposed diffusion-driven TTA methods mitigate this by adapting model inputs instead of weights, where an unconditional diffusion model, trained on the source domain, transforms target-domain data into a synthetic domain that is expected to approximate the source domain. However, in this paper, we reveal that although the synthetic data in diffusion-driven TTA seems indistinguishable from the source data, it is unaligned with, or even markedly different from the latter for deep networks. To address this issue, we propose a \textbf{S}ynthetic-\textbf{D}omain \textbf{A}lignment (SDA) framework. Our key insight is to fine-tune the source model with synthetic data to ensure better alignment. Specifically, we first employ a conditional diffusion model to generate labeled samples, creating a synthetic dataset. Subsequently, we use the aforementioned unconditional diffusion model to add noise to and denoise each sample before fine-tuning. This Mix of Diffusion (MoD) process mitigates the potential domain misalignment between the conditional and unconditional models. Extensive experiments across classifiers, segmenters, and multimodal large language models (MLLMs, \eg, LLaVA) demonstrate that SDA achieves superior domain alignment and consistently outperforms existing diffusion-driven TTA methods. Our code is available at https://github.com/SHI-Labs/Diffusion-Driven-Test-Time-Adaptation-via-Synthetic-Domain-Alignment.
Related papers
- Derivative-Free Guidance in Continuous and Discrete Diffusion Models with Soft Value-Based Decoding [84.3224556294803]
Diffusion models excel at capturing the natural design spaces of images, molecules, DNA, RNA, and protein sequences.
We aim to optimize downstream reward functions while preserving the naturalness of these design spaces.
Our algorithm integrates soft value functions, which looks ahead to how intermediate noisy states lead to high rewards in the future.
arXiv Detail & Related papers (2024-08-15T16:47:59Z) - Distribution Alignment for Fully Test-Time Adaptation with Dynamic Online Data Streams [19.921480334048756]
Test-Time Adaptation (TTA) enables adaptation and inference in test data streams with domain shifts from the source.
We propose a novel Distribution Alignment loss for TTA.
We surpass existing methods in non-i.i.d. scenarios and maintain competitive performance under the ideal i.i.d. assumption.
arXiv Detail & Related papers (2024-07-16T19:33:23Z) - Target to Source: Guidance-Based Diffusion Model for Test-Time
Adaptation [8.695439655048634]
We propose a novel guidance-based diffusion-driven adaptation (GDDA) to overcome the data shift.
GDDA significantly performs better than the state-of-the-art baselines.
arXiv Detail & Related papers (2023-12-08T02:31:36Z) - Transcending Domains through Text-to-Image Diffusion: A Source-Free
Approach to Domain Adaptation [6.649910168731417]
Domain Adaptation (DA) is a method for enhancing a model's performance on a target domain with inadequate annotated data.
We propose a novel framework for SFDA that generates source data using a text-to-image diffusion model trained on the target domain samples.
arXiv Detail & Related papers (2023-10-02T23:38:17Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) aims to connect the good ends of both worlds while bypassing their limitations.
DaC divides the target data into source-like and target-specific samples, where either group of samples is treated with tailored goals.
We further align the source-like domain with the target-specific samples using a memory bank-based Maximum Mean Discrepancy (MMD) loss to reduce the distribution mismatch.
arXiv Detail & Related papers (2022-11-12T09:21:49Z) - Back to the Source: Diffusion-Driven Test-Time Adaptation [77.4229736436935]
Test-time adaptation harnesses test inputs to improve accuracy of a model trained on source data when tested on shifted target data.
We instead update the target data, by projecting all test inputs toward the source domain with a generative diffusion model.
arXiv Detail & Related papers (2022-07-07T17:14:10Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
Domain Adaptation aims to transfer the knowledge learned from a labeled source domain to an unlabeled target domain whose data distributions are different.
Recently, Source-Free Domain Adaptation (SFDA) has drawn much attention, which tries to tackle domain adaptation problem without using source data.
In this work, we propose a novel framework called SFDA-DE to address SFDA task via source Distribution Estimation.
arXiv Detail & Related papers (2022-04-24T12:22:19Z) - Domain Adaptation without Source Data [20.64875162351594]
We introduce Source data-Free Domain Adaptation (SFDA) to avoid accessing source data that may contain sensitive information.
Our key idea is to leverage a pre-trained model from the source domain and progressively update the target model in a self-learning manner.
Our PrDA outperforms conventional domain adaptation methods on benchmark datasets.
arXiv Detail & Related papers (2020-07-03T07:21:30Z) - Do We Really Need to Access the Source Data? Source Hypothesis Transfer
for Unsupervised Domain Adaptation [102.67010690592011]
Unsupervised adaptationUDA (UDA) aims to leverage the knowledge learned from a labeled source dataset to solve similar tasks in a new unlabeled domain.
Prior UDA methods typically require to access the source data when learning to adapt the model.
This work tackles a practical setting where only a trained source model is available and how we can effectively utilize such a model without source data to solve UDA problems.
arXiv Detail & Related papers (2020-02-20T03:13:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.