論文の概要: Kolmogorov-Arnold Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2406.18354v1
- Date: Wed, 26 Jun 2024 13:54:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-27 13:19:36.061370
- Title: Kolmogorov-Arnold Graph Neural Networks
- Title(参考訳): Kolmogorov-Arnoldグラフニューラルネットワーク
- Authors: Gianluca De Carlo, Andrea Mastropietro, Aris Anagnostopoulos,
- Abstract要約: グラフニューラルネットワーク(GNN)は、ネットワークのようなデータから学習する上で優れるが、解釈性に欠けることが多い。
本稿では,GKAN(Graph Kolmogorov-Arnold Network)を提案する。
- 参考スコア(独自算出の注目度): 2.4005219869876453
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Graph neural networks (GNNs) excel in learning from network-like data but often lack interpretability, making their application challenging in domains requiring transparent decision-making. We propose the Graph Kolmogorov-Arnold Network (GKAN), a novel GNN model leveraging spline-based activation functions on edges to enhance both accuracy and interpretability. Our experiments on five benchmark datasets demonstrate that GKAN outperforms state-of-the-art GNN models in node classification, link prediction, and graph classification tasks. In addition to the improved accuracy, GKAN's design inherently provides clear insights into the model's decision-making process, eliminating the need for post-hoc explainability techniques. This paper discusses the methodology, performance, and interpretability of GKAN, highlighting its potential for applications in domains where interpretability is crucial.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、ネットワークライクなデータから学習する上で優れていますが、解釈可能性に欠けることが多いため、透過的な意思決定を必要とするドメインではアプリケーションが困難になります。
エッジ上でのスプラインベースのアクティベーション機能を利用して精度と解釈性を向上させる新しいGNNモデルであるGraph Kolmogorov-Arnold Network (GKAN)を提案する。
GKANはノード分類,リンク予測,グラフ分類タスクにおいて,最先端のGNNモデルよりも優れていることを示す。
精度の向上に加えて、GKANの設計は本質的にモデルの意思決定プロセスに対する明確な洞察を与え、ポストホックな説明可能性技術の必要性を排除している。
本稿では、GKANの方法論、性能、解釈可能性について論じ、解釈可能性が非常に重要である領域における応用の可能性を明らかにする。
関連論文リスト
- Graph Reasoning Networks [9.18586425686959]
Graph Reasoning Networks (GRNs) は、グラフ表現と学習したグラフ表現の長所と、微分可能満足度解法に基づく推論モジュールを組み合わせるための新しいアプローチである。
実世界のデータセットの結果は、GNNに匹敵するパフォーマンスを示している。
合成データセットの実験は、新しく提案された手法の可能性を示している。
論文 参考訳(メタデータ) (2024-07-08T10:53:49Z) - The Intelligible and Effective Graph Neural Additive Networks [29.686091109844746]
Graph Neural Additive Network (GNAN) は、一般化加法モデルの解釈可能なクラスの拡張である。
GNANは完全に解釈可能で、機能レベルとグラフレベルでのグローバルな説明とローカルな説明が可能である。
我々は、さまざまなタスクやデータセットの一連の例において、GNANの知性を示す。
論文 参考訳(メタデータ) (2024-06-03T13:29:36Z) - Fair Graph Neural Network with Supervised Contrastive Regularization [12.666235467177131]
公平性を考慮したグラフニューラルネットワーク(GNN)の学習モデルを提案する。
提案手法は, コントラスト損失と環境損失を統合し, 精度と公正性を両立させる。
論文 参考訳(メタデータ) (2024-04-09T07:49:05Z) - Uncertainty in Graph Neural Networks: A Survey [50.63474656037679]
グラフニューラルネットワーク(GNN)は、様々な現実世界のアプリケーションで広く使われている。
しかし、多様な情報源から生じるGNNの予測的不確実性は、不安定で誤った予測につながる可能性がある。
本調査は,不確実性の観点からGNNの概要を概観することを目的としている。
論文 参考訳(メタデータ) (2024-03-11T21:54:52Z) - Attentional Graph Neural Networks for Robust Massive Network
Localization [20.416879207269446]
グラフニューラルネットワーク(GNN)は、機械学習における分類タスクの顕著なツールとして登場した。
本稿では,GNNとアテンション機構を統合し,ネットワークローカライゼーションという難解な非線形回帰問題に対処する。
我々はまず,厳密な非視線(NLOS)条件下でも例外的な精度を示すグラフ畳み込みネットワーク(GCN)に基づく新しいネットワークローカライゼーション手法を提案する。
論文 参考訳(メタデータ) (2023-11-28T15:05:13Z) - GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels [81.93520935479984]
本稿では,ラベル付きおよび観測されたグラフに基づいて学習した特定のGNNモデルの性能を評価することを目的とした,新しい問題であるGNNモデル評価について検討する。
本稿では,(1) DiscGraph セット構築と(2) GNNEvaluator トレーニングと推論を含む2段階の GNN モデル評価フレームワークを提案する。
DiscGraphセットからの効果的なトレーニング監督の下で、GNNEvaluatorは、評価対象であるGNNモデルのノード分類精度を正確に推定することを学ぶ。
論文 参考訳(メタデータ) (2023-10-23T05:51:59Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural
Networks [51.42338058718487]
グラフニューラルネットワーク(GNN)は、グラフ機械学習における有望なパフォーマンスについて、広範な研究の注目を集めている。
GCNやGPRGNNのような既存のアプローチは、テストグラフ上のホモフィリな変化に直面しても堅牢ではない。
偶数多項式グラフフィルタに対応するスペクトルGNNであるEvenNetを提案する。
論文 参考訳(メタデータ) (2022-05-27T10:48:14Z) - Edge-Level Explanations for Graph Neural Networks by Extending
Explainability Methods for Convolutional Neural Networks [33.20913249848369]
グラフニューラルネットワーク(GNN)は、グラフデータを入力として扱うディープラーニングモデルであり、トラフィック予測や分子特性予測といった様々なタスクに適用される。
本稿では,CNNに対する説明可能性の手法として,LIME(Local Interpretable Model-Agnostic Explanations)やGradient-Based Saliency Maps,Gradient-Weighted Class Activation Mapping(Grad-CAM)をGNNに拡張する。
実験結果から,LIMEに基づくアプローチは実環境における複数のタスクに対する最も効率的な説明可能性手法であり,その状態においても優れていたことが示唆された。
論文 参考訳(メタデータ) (2021-11-01T06:27:29Z) - Discriminability of Single-Layer Graph Neural Networks [172.5042368548269]
グラフニューラルネットワーク(GNN)は、幅広い問題について有望な性能を示した。
本稿では, 識別可能性の特性に着目し, 安定グラフフィルタバンクへのポイントワイド非線形性の適用により, 高固有値コンテンツに対する識別能力が向上する条件を確立する。
論文 参考訳(メタデータ) (2020-10-17T18:52:34Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。