Analytic thermodynamic properties of the Lieb-Liniger gas
- URL: http://arxiv.org/abs/2404.06092v3
- Date: Thu, 6 Jun 2024 00:23:46 GMT
- Title: Analytic thermodynamic properties of the Lieb-Liniger gas
- Authors: M. L. Kerr, G. De Rosi, K. V. Kheruntsyan,
- Abstract summary: We present a review on the state-of-the-art of the approximate analytic approaches describing the finite-temperature thermodynamic quantities of the Lieb-Liniger model of the 1D Bose gas.
This paradigmatic model of quantum many-body-theory plays an important role in many areas of physics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a comprehensive review on the state-of-the-art of the approximate analytic approaches describing the finite-temperature thermodynamic quantities of the Lieb-Liniger model of the one-dimensional (1D) Bose gas with contact repulsive interactions. This paradigmatic model of quantum many-body-theory plays an important role in many areas of physics -- thanks to its integrability and possible experimental realization using, e.g., ensembles of ultracold bosonic atoms confined to quasi-1D geometries. The thermodynamics of the uniform Lieb-Liniger gas can be obtained numerically using the exact thermal Bethe ansatz (TBA) method, first derived in 1969 by Yang and Yang. However, the TBA numerical calculations do not allow for the in-depth understanding of the underlying physical mechanisms that govern the thermodynamic behavior of the Lieb-Liniger gas at finite temperature. Our work is then motivated by the insights that emerge naturally from the transparency of closed-form analytic results, which are derived here in six different regimes of the gas and which exhibit an excellent agreement with the TBA numerics. Our findings can be further adopted for characterising the equilibrium properties of inhomogeneous (e.g., harmonically trapped) 1D Bose gases within the local density approximation and for the development of improved hydrodynamic theories, allowing for the calculation of breathing mode frequencies which depend on the underlying thermodynamic equation of state. Our analytic approaches can be applied to other systems including impurities in a quantum bath, liquid helium-4, and ultracold Bose gas mixtures.
Related papers
- Improved models for ideal Fermi gas and ideal Bose gas using quantum phase space [0.0]
It is shown that the improvements can be introduced into the current models of ideal Fermi and ideal gas.
The construction of the improved models is based on the use of the concepts of phase space representation of quantum mechanics.
arXiv Detail & Related papers (2024-07-13T20:45:41Z) - Orbital-Free Density Functional Theory with Continuous Normalizing Flows [54.710176363763296]
Orbital-free density functional theory (OF-DFT) provides an alternative approach for calculating the molecular electronic energy.
Our model successfully replicates the electronic density for a diverse range of chemical systems.
arXiv Detail & Related papers (2023-11-22T16:42:59Z) - How to measure the free energy and partition function from atom-atom
correlations [0.0]
We focus on the one-dimensional (1D) Bose gas described by the integrable Lieb-Liniger model.
The proposed approach relies on deducing the Helmholtz or Landau free energy directly from measurements of local atom-atom correlations.
We find excellent agreement with the exact results based on the thermodynamic Bethe ansatz available for this integrable model.
arXiv Detail & Related papers (2023-09-05T21:31:50Z) - Thermodynamic geometry of ideal quantum gases: a general framework and a
geometric picture of BEC-enhanced heat engines [0.0]
We show that the standard approach of equilibrium physics can be extended to the slow driving regime in a thermodynamically consistent way.
We use a Lindblad-type quantum master equation to work out a dynamical model of a quantum many-body engine using a harmonically trapped Bose gas.
Our work paves the way for a more general thermodynamic framework that makes it possible to systematically assess the impact of quantum many-body effects on the performance of thermal machines.
arXiv Detail & Related papers (2022-12-22T23:14:00Z) - Thermodynamics of a dilute Bose gas: A path-integral Monte Carlo study [0.0]
We present precise path-integral Monte-Carlo results for the thermodynamics of a homogeneous dilute Bose gas.
Specifically, we address interaction effects, focusing on deviations from the ideal gas law in the thermodynamic limit.
arXiv Detail & Related papers (2021-10-01T09:45:01Z) - Quantum Generalized Hydrodynamics of the Tonks-Girardeau gas: density
fluctuations and entanglement entropy [0.0]
We derive exact results for the density fluctuations and entanglement entropy of a one-dimensional trapped Bose gas in the Tonks-Girardeau (TG) or hard-core limit.
The free nature of the TG gas allows for more accurate results on the numerical side, where a higher number of particles as compared to the interacting case can be simulated.
arXiv Detail & Related papers (2021-07-12T18:00:09Z) - Uhlmann Fidelity and Fidelity Susceptibility for Integrable Spin Chains
at Finite Temperature: Exact Results [68.8204255655161]
We show that the proper inclusion of the odd parity subspace leads to the enhancement of maximal fidelity susceptibility in the intermediate range of temperatures.
The correct low-temperature behavior is captured by an approximation involving the two lowest many-body energy eigenstates.
arXiv Detail & Related papers (2021-05-11T14:08:02Z) - Qubit thermodynamics far from equilibrium: two perspectives about the
nature of heat and work in the quantum regime [68.8204255655161]
We develop an alternative theoretical framework for the thermodynamic analysis of two-level systems.
We observe the appearance of a new term of work, which represents the energy cost of rotating the Bloch vector in presence of the external field that defines the local Hamiltonian.
In order to illustrate our findings we study, from both perspectives, matter-radiation interaction processes for two different systems.
arXiv Detail & Related papers (2021-03-16T09:31:20Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Out-of-equilibrium quantum thermodynamics in the Bloch sphere:
temperature and internal entropy production [68.8204255655161]
An explicit expression for the temperature of an open two-level quantum system is obtained.
This temperature coincides with the environment temperature if the system reaches thermal equilibrium with a heat reservoir.
We show that within this theoretical framework the total entropy production can be partitioned into two contributions.
arXiv Detail & Related papers (2020-04-09T23:06:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.