Learning Model Predictive Control Parameters via Bayesian Optimization for Battery Fast Charging
- URL: http://arxiv.org/abs/2404.06125v1
- Date: Tue, 9 Apr 2024 08:49:41 GMT
- Title: Learning Model Predictive Control Parameters via Bayesian Optimization for Battery Fast Charging
- Authors: Sebastian Hirt, Andreas Höhl, Joachim Schaeffer, Johannes Pohlodek, Richard D. Braatz, Rolf Findeisen,
- Abstract summary: tuning parameters in model predictive control (MPC) presents significant challenges, particularly when there is a notable discrepancy between the controller's predictions and the behavior of the closed-loop plant.
We apply Bayesian optimization for efficient learning of unknown model parameters and parameterized constraint backoff terms, aiming to improve closed-loop performance of battery fast charging.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tuning parameters in model predictive control (MPC) presents significant challenges, particularly when there is a notable discrepancy between the controller's predictions and the actual behavior of the closed-loop plant. This mismatch may stem from factors like substantial model-plant differences, limited prediction horizons that do not cover the entire time of interest, or unforeseen system disturbances. Such mismatches can jeopardize both performance and safety, including constraint satisfaction. Traditional methods address this issue by modifying the finite horizon cost function to better reflect the overall operational cost, learning parts of the prediction model from data, or implementing robust MPC strategies, which might be either computationally intensive or overly cautious. As an alternative, directly optimizing or learning the controller parameters to enhance closed-loop performance has been proposed. We apply Bayesian optimization for efficient learning of unknown model parameters and parameterized constraint backoff terms, aiming to improve closed-loop performance of battery fast charging. This approach establishes a hierarchical control framework where Bayesian optimization directly fine-tunes closed-loop behavior towards a global and long-term objective, while MPC handles lower-level, short-term control tasks. For lithium-ion battery fast charging, we show that the learning approach not only ensures safe operation but also maximizes closed-loop performance. This includes maintaining the battery's operation below its maximum terminal voltage and reducing charging times, all achieved using a standard nominal MPC model with a short horizon and notable initial model-plant mismatch.
Related papers
- Safe Learning-Based Optimization of Model Predictive Control: Application to Battery Fast-Charging [0.0]
We discuss an approach that integrates model predictive control with safe Bayesian optimization to optimize long-term closed-loop performance.
This work extends previous research by emphasizing closed-loop constraint satisfaction.
As a practical application, we apply our approach to fast charging of lithium-ion batteries.
arXiv Detail & Related papers (2024-10-07T12:23:40Z) - Forecast-PEFT: Parameter-Efficient Fine-Tuning for Pre-trained Motion Forecasting Models [68.23649978697027]
Forecast-PEFT is a fine-tuning strategy that freezes the majority of the model's parameters, focusing adjustments on newly introduced prompts and adapters.
Our experiments show that Forecast-PEFT outperforms traditional full fine-tuning methods in motion prediction tasks.
Forecast-FT further improves prediction performance, evidencing up to a 9.6% enhancement over conventional baseline methods.
arXiv Detail & Related papers (2024-07-28T19:18:59Z) - Stability-informed Bayesian Optimization for MPC Cost Function Learning [5.643541009427271]
This work explores closed-loop learning for predictive control parameters under imperfect information.
We employ constrained Bayesian optimization to learn a model predictive controller's (MPC) cost function parametrized as a feedforward neural network.
We extend this framework by stability constraints on the learned controller parameters, exploiting the optimal value function of the underlying MPC as a Lyapunov candidate.
arXiv Detail & Related papers (2024-04-18T13:49:09Z) - On Controller Tuning with Time-Varying Bayesian Optimization [74.57758188038375]
We will use time-varying optimization (TVBO) to tune controllers online in changing environments using appropriate prior knowledge on the control objective and its changes.
We propose a novel TVBO strategy using Uncertainty-Injection (UI), which incorporates the assumption of incremental and lasting changes.
Our model outperforms the state-of-the-art method in TVBO, exhibiting reduced regret and fewer unstable parameter configurations.
arXiv Detail & Related papers (2022-07-22T14:54:13Z) - Tuning Particle Accelerators with Safety Constraints using Bayesian
Optimization [73.94660141019764]
tuning machine parameters of particle accelerators is a repetitive and time-consuming task.
We propose and evaluate a step size-limited variant of safe Bayesian optimization.
arXiv Detail & Related papers (2022-03-26T02:21:03Z) - Regret-optimal Estimation and Control [52.28457815067461]
We show that the regret-optimal estimator and regret-optimal controller can be derived in state-space form.
We propose regret-optimal analogs of Model-Predictive Control (MPC) and the Extended KalmanFilter (EKF) for systems with nonlinear dynamics.
arXiv Detail & Related papers (2021-06-22T23:14:21Z) - Blending MPC & Value Function Approximation for Efficient Reinforcement
Learning [42.429730406277315]
Model-Predictive Control (MPC) is a powerful tool for controlling complex, real-world systems.
We present a framework for improving on MPC with model-free reinforcement learning (RL)
We show that our approach can obtain performance comparable with MPC with access to true dynamics.
arXiv Detail & Related papers (2020-12-10T11:32:01Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty.
LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model.
arXiv Detail & Related papers (2020-03-12T19:56:38Z) - Online Parameter Estimation for Safety-Critical Systems with Gaussian
Processes [6.122161391301866]
We present a Bayesian optimization framework based on Gaussian processes (GPs) for online parameter estimation.
It uses an efficient search strategy over a response surface in the parameter space for finding the global optima with minimal function evaluations.
We demonstrate our technique on an actuated planar pendulum and safety-critical quadrotor in simulation with changing parameters.
arXiv Detail & Related papers (2020-02-18T20:38:00Z) - Stochastic Finite State Control of POMDPs with LTL Specifications [14.163899014007647]
Partially observable Markov decision processes (POMDPs) provide a modeling framework for autonomous decision making under uncertainty.
This paper considers the quantitative problem of synthesizing sub-optimal finite state controllers (sFSCs) for POMDPs.
We propose a bounded policy algorithm, leading to a controlled growth in sFSC size and an any time algorithm, where the performance of the controller improves with successive iterations.
arXiv Detail & Related papers (2020-01-21T18:10:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.