Safe Learning-Based Optimization of Model Predictive Control: Application to Battery Fast-Charging
- URL: http://arxiv.org/abs/2410.04982v1
- Date: Mon, 7 Oct 2024 12:23:40 GMT
- Title: Safe Learning-Based Optimization of Model Predictive Control: Application to Battery Fast-Charging
- Authors: Sebastian Hirt, Andreas Höhl, Johannes Pohlodek, Joachim Schaeffer, Maik Pfefferkorn, Richard D. Braatz, Rolf Findeisen,
- Abstract summary: We discuss an approach that integrates model predictive control with safe Bayesian optimization to optimize long-term closed-loop performance.
This work extends previous research by emphasizing closed-loop constraint satisfaction.
As a practical application, we apply our approach to fast charging of lithium-ion batteries.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model predictive control (MPC) is a powerful tool for controlling complex nonlinear systems under constraints, but often struggles with model uncertainties and the design of suitable cost functions. To address these challenges, we discuss an approach that integrates MPC with safe Bayesian optimization to optimize long-term closed-loop performance despite significant model-plant mismatches. By parameterizing the MPC stage cost function using a radial basis function network, we employ Bayesian optimization as a multi-episode learning strategy to tune the controller without relying on precise system models. This method mitigates conservativeness introduced by overly cautious soft constraints in the MPC cost function and provides probabilistic safety guarantees during learning, ensuring that safety-critical constraints are met with high probability. As a practical application, we apply our approach to fast charging of lithium-ion batteries, a challenging task due to the complicated battery dynamics and strict safety requirements, subject to the requirement to be implementable in real time. Simulation results demonstrate that, in the context of model-plant mismatch, our method reduces charging times compared to traditional MPC methods while maintaining safety. This work extends previous research by emphasizing closed-loop constraint satisfaction and offers a promising solution for enhancing performance in systems where model uncertainties and safety are critical concerns.
Related papers
- Safe and Stable Closed-Loop Learning for Neural-Network-Supported Model Predictive Control [0.0]
We consider safe learning of parametrized predictive controllers that operate with incomplete information about the underlying process.
Our method focuses on the system's overall long-term performance in closed-loop while keeping it safe and stable.
We explicitly incorporated stability information in the Bayesian-optimization-based learning procedure, thereby achieving rigorous probabilistic safety guarantees.
arXiv Detail & Related papers (2024-09-16T11:03:58Z) - Stability-informed Bayesian Optimization for MPC Cost Function Learning [5.643541009427271]
This work explores closed-loop learning for predictive control parameters under imperfect information.
We employ constrained Bayesian optimization to learn a model predictive controller's (MPC) cost function parametrized as a feedforward neural network.
We extend this framework by stability constraints on the learned controller parameters, exploiting the optimal value function of the underlying MPC as a Lyapunov candidate.
arXiv Detail & Related papers (2024-04-18T13:49:09Z) - Learning Model Predictive Control Parameters via Bayesian Optimization for Battery Fast Charging [0.0]
tuning parameters in model predictive control (MPC) presents significant challenges, particularly when there is a notable discrepancy between the controller's predictions and the behavior of the closed-loop plant.
We apply Bayesian optimization for efficient learning of unknown model parameters and parameterized constraint backoff terms, aiming to improve closed-loop performance of battery fast charging.
arXiv Detail & Related papers (2024-04-09T08:49:41Z) - Safe Machine-Learning-supported Model Predictive Force and Motion
Control in Robotics [0.0]
Many robotic tasks, such as human-robot interactions or the handling of fragile objects, require tight control and limitation of appearing forces and moments alongside motion control to achieve safe yet high-performance operation.
We propose a learning-supported model predictive force and motion control scheme that provides safety guarantees while adapting to changing situations.
arXiv Detail & Related papers (2023-03-08T13:30:02Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
We introduce a general approach for seeking high dimensional non-linear optimization problems in which maintaining safety during learning is crucial.
Our approach called LBSGD is based on applying a logarithmic barrier approximation with a carefully chosen step size.
We demonstrate the effectiveness of our approach on minimizing violation in policy tasks in safe reinforcement learning.
arXiv Detail & Related papers (2022-07-21T11:14:47Z) - Pointwise Feasibility of Gaussian Process-based Safety-Critical Control
under Model Uncertainty [77.18483084440182]
Control Barrier Functions (CBFs) and Control Lyapunov Functions (CLFs) are popular tools for enforcing safety and stability of a controlled system, respectively.
We present a Gaussian Process (GP)-based approach to tackle the problem of model uncertainty in safety-critical controllers that use CBFs and CLFs.
arXiv Detail & Related papers (2021-06-13T23:08:49Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
arXiv Detail & Related papers (2021-05-17T08:36:18Z) - Closing the Closed-Loop Distribution Shift in Safe Imitation Learning [80.05727171757454]
We treat safe optimization-based control strategies as experts in an imitation learning problem.
We train a learned policy that can be cheaply evaluated at run-time and that provably satisfies the same safety guarantees as the expert.
arXiv Detail & Related papers (2021-02-18T05:11:41Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Guided Constrained Policy Optimization for Dynamic Quadrupedal Robot
Locomotion [78.46388769788405]
We introduce guided constrained policy optimization (GCPO), an RL framework based upon our implementation of constrained policy optimization (CPPO)
We show that guided constrained RL offers faster convergence close to the desired optimum resulting in an optimal, yet physically feasible, robotic control behavior without the need for precise reward function tuning.
arXiv Detail & Related papers (2020-02-22T10:15:53Z) - Neural Lyapunov Model Predictive Control: Learning Safe Global
Controllers from Sub-optimal Examples [4.777323087050061]
In many real-world and industrial applications, it is typical to have an existing control strategy, for instance, execution from a human operator.
The objective of this work is to improve upon this unknown, safe but suboptimal policy by learning a new controller that retains safety and stability.
The proposed algorithm alternatively learns the terminal cost and updates the MPC parameters according to a stability metric.
arXiv Detail & Related papers (2020-02-21T16:57:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.