論文の概要: Automated National Urban Map Extraction
- arxiv url: http://arxiv.org/abs/2404.06202v1
- Date: Tue, 9 Apr 2024 10:47:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 15:09:49.576601
- Title: Automated National Urban Map Extraction
- Title(参考訳): 都市地図の自動抽出
- Authors: Hasan Nasrallah, Abed Ellatif Samhat, Cristiano Nattero, Ali J. Ghandour,
- Abstract要約: 発展途上国は通常、国家の屋上地図を作成し、定期的に更新する適切な統治手段を欠いている。
従来のフォトグラメトリと測量手法を用いて、このギャップを埋めて、そのような都市地図を自動で取得するパイプラインを提案することができる。
本稿では,多層建物のインスタンスセグメンテーションのための完全畳み込みニューラルネットワークのパワーを活用して,高いオブジェクトワイド精度を実現することを目的とする。
我々は、この作業を再現し、グローバル・サウスの適切な都市計画を欠いた地域で目撃された密集したスラム地帯で、非常に正確な結果を得るためのすべてのエンジニアリング手順を詳述する。
- 参考スコア(独自算出の注目度): 0.3495246564946556
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Developing countries usually lack the proper governance means to generate and regularly update a national rooftop map. Using traditional photogrammetry and surveying methods to produce a building map at the federal level is costly and time consuming. Using earth observation and deep learning methods, we can bridge this gap and propose an automated pipeline to fetch such national urban maps. This paper aims to exploit the power of fully convolutional neural networks for multi-class buildings' instance segmentation to leverage high object-wise accuracy results. Buildings' instance segmentation from sub-meter high-resolution satellite images can be achieved with relatively high pixel-wise metric scores. We detail all engineering steps to replicate this work and ensure highly accurate results in dense and slum areas witnessed in regions that lack proper urban planning in the Global South. We applied a case study of the proposed pipeline to Lebanon and successfully produced the first comprehensive national building footprint map with approximately 1 Million units with an 84% accuracy. The proposed architecture relies on advanced augmentation techniques to overcome dataset scarcity, which is often the case in developing countries.
- Abstract(参考訳): 発展途上国は通常、国家の屋上地図を作成し、定期的に更新する適切な統治手段を欠いている。
連邦レベルで建物マップを作成するのに、従来のフォトグラムと測量法を使うことは、費用と時間を要する。
地球観測と深層学習の手法により,このギャップを埋めることができ,そのような都市地図を収集する自動パイプラインを提案する。
本稿では,多層建物のインスタンスセグメンテーションのための完全畳み込みニューラルネットワークのパワーを活用して,高いオブジェクトワイド精度を実現することを目的とする。
サブメートル高解像度衛星画像からの建物のインスタンスセグメンテーションは、比較的高いピクセル単位のメートル法スコアで達成できる。
我々は、この作業を再現し、グローバル・サウスの適切な都市計画を欠いた地域で目撃された密集したスラム地帯で、非常に正確な結果を得るためのすべてのエンジニアリング手順を詳述する。
提案したパイプラインのケーススタディをレバノンに適用し,約100万ユニットの総面積を84%の精度で達成した。
提案したアーキテクチャは、発展途上国でよく見られるデータセットの不足を克服するために、高度な拡張技術に依存している。
関連論文リスト
- OpenSatMap: A Fine-grained High-resolution Satellite Dataset for Large-scale Map Construction [65.4151284975348]
OpenSatMapは、大規模マップ構築のための細粒度で高解像度の衛星データセットである。
データセットの公開とメンテナンスにより、衛星ベースのマップ構築と、自律運転のような下流タスクのための高品質なベンチマークを提供する。
論文 参考訳(メタデータ) (2024-10-30T17:56:02Z) - Submeter-level Land Cover Mapping of Japan [14.9235490098836]
本報告では,日本初の8級地すべりマップについて,比較的低いアノテーションコストで紹介する。
我々は OpenEarthMap を利用した人間のループ内深層学習フレームワークを提案する。
本フレームワークは, アノテーションコストが低く, 高精度な地図作成が可能であり, 全国規模の土地被覆地図の自動更新に寄与する可能性を実証している。
論文 参考訳(メタデータ) (2023-11-19T06:34:50Z) - GeoLLM: Extracting Geospatial Knowledge from Large Language Models [49.20315582673223]
大規模言語モデルから地理空間的知識を効果的に抽出する新しい手法であるGeoLLMを提案する。
我々は、人口密度や経済生活の計測など、国際社会への関心の中心となる複数の課題にまたがるアプローチの有用性を実証する。
実験の結果, LLMは試料効率が高く, 地理空間情報に富み, 世界中のロバストであることがわかった。
論文 参考訳(メタデータ) (2023-10-10T00:03:23Z) - Geo-Encoder: A Chunk-Argument Bi-Encoder Framework for Chinese
Geographic Re-Ranking [61.60169764507917]
中国の地理的再ランクタスクは、検索された候補者の中で最も関連性の高い住所を見つけることを目的としている。
そこで我々は,中国語の地理的意味論をより効果的に統合する,革新的なフレームワークであるGeo-Encoderを提案する。
論文 参考訳(メタデータ) (2023-09-04T13:44:50Z) - Building Coverage Estimation with Low-resolution Remote Sensing Imagery [65.95520230761544]
本稿では,低解像度衛星画像のみを用いた建物被覆量の推定手法を提案する。
本モデルでは, 世界中の開発レベルの異なる地域において, 建築範囲の予測において最大0.968の判定係数を達成している。
論文 参考訳(メタデータ) (2023-01-04T05:19:33Z) - Tracking Urbanization in Developing Regions with Remote Sensing
Spatial-Temporal Super-Resolution [82.50301442891602]
本稿では,高分解能画像と高分解能画像の時系列を併用したパイプラインを提案する。
提案手法は, 単一画像超解像を用いたベースラインと比較して, 大幅な改善を実現している。
論文 参考訳(メタデータ) (2022-04-04T17:21:20Z) - Embedding Earth: Self-supervised contrastive pre-training for dense land
cover classification [61.44538721707377]
本研究では,衛星画像の高可用性を活用するための自己監督型コントラスト事前学習法として,エンベディングアースを提案する。
提案手法による事前学習では, 25%の絶対mIoUが得られた。
学習した特徴は、異なる領域間で一般化され、提案した事前学習スキームの可能性を開放する。
論文 参考訳(メタデータ) (2022-03-11T16:14:14Z) - Mapping Vulnerable Populations with AI [23.732584273099054]
構築機能は、例えばツイートや地上画像などのソーシャルメディアデータを解析することで検索される。
これらの付加属性を付加したマップの構築により、より正確な人口密度マップを導出することができる。
論文 参考訳(メタデータ) (2021-07-29T15:52:11Z) - Utilizing Satellite Imagery Datasets and Machine Learning Data Models to
Evaluate Infrastructure Change in Undeveloped Regions [0.0]
本研究の目的は、鉄道などの大規模インフラプロジェクトを対象とした自動監視により、建設の方向性を定義し予測するための信頼性の高い指標を決定することである。
利用可能な衛星データを用いて3Dメッシュとデジタル表面モデル(DSM)を作成することにより、輸送経路を効果的に予測できることを期待する。
論文 参考訳(メタデータ) (2020-09-01T02:11:14Z) - Map Generation from Large Scale Incomplete and Inaccurate Data Labels [24.205001970190924]
本稿では,高分解能空中画像を用いた地図作成プロセスを自動化するアルゴリズムパイプラインと分散計算システムの開発について述べる。
我々は、U-NetやCycleGANといった最先端の畳み込みニューラルネットワークアーキテクチャを採用して、より正確で完全な人為的なインフラストラクチャのラベルを持つマップをインクリメンタルに生成します。
論文 参考訳(メタデータ) (2020-05-20T13:59:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。