Towards Autonomous Driving with Small-Scale Cars: A Survey of Recent Development
- URL: http://arxiv.org/abs/2404.06229v1
- Date: Tue, 9 Apr 2024 11:40:37 GMT
- Title: Towards Autonomous Driving with Small-Scale Cars: A Survey of Recent Development
- Authors: Dianzhao Li, Paul Auerbach, Ostap Okhrin,
- Abstract summary: The emergence of small-scale car platforms offers a compelling alternative to full-scale autonomous driving vehicles.
This survey outlines various small-scale car platforms, categorizing them and detailing the research advancements accomplished through their usage.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While engaging with the unfolding revolution in autonomous driving, a challenge presents itself, how can we effectively raise awareness within society about this transformative trend? While full-scale autonomous driving vehicles often come with a hefty price tag, the emergence of small-scale car platforms offers a compelling alternative. These platforms not only serve as valuable educational tools for the broader public and young generations but also function as robust research platforms, contributing significantly to the ongoing advancements in autonomous driving technology. This survey outlines various small-scale car platforms, categorizing them and detailing the research advancements accomplished through their usage. The conclusion provides proposals for promising future directions in the field.
Related papers
- Exploring the Causality of End-to-End Autonomous Driving [57.631400236930375]
We propose a comprehensive approach to explore and analyze the causality of end-to-end autonomous driving.
Our work is the first to unveil the mystery of end-to-end autonomous driving and turn the black box into a white one.
arXiv Detail & Related papers (2024-07-09T04:56:11Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
This paper evaluates the inherent risks in autonomous driving by examining the current landscape of AVs.
We develop specific claims highlighting the delicate balance between the advantages of AVs and potential security challenges in real-world scenarios.
arXiv Detail & Related papers (2024-05-14T09:42:21Z) - World Models for Autonomous Driving: An Initial Survey [16.448614804069674]
The capability to accurately predict future events and assess their implications is paramount for both safety and efficiency.
World models have emerged as a transformative approach, enabling autonomous driving systems to synthesize and interpret vast amounts of sensor data.
This paper provides an initial review of the current state and prospective advancements of world models in autonomous driving.
arXiv Detail & Related papers (2024-03-05T03:23:55Z) - Autonomous Vehicles: Evolution of Artificial Intelligence and Learning
Algorithms [0.0]
The study presents statistical insights into the usage and types of AI/learning algorithms over the years.
The paper highlights the pivotal role of parameters in refining algorithms for both trucks and cars.
It concludes by outlining different levels of autonomy, elucidating the nuanced usage of AI and learning algorithms.
arXiv Detail & Related papers (2024-02-27T17:07:18Z) - Applications of Computer Vision in Autonomous Vehicles: Methods, Challenges and Future Directions [2.693342141713236]
This paper reviews publications on computer vision and autonomous driving that are published during the last ten years.
In particular, we first investigate the development of autonomous driving systems and summarize these systems that are developed by the major automotive manufacturers from different countries.
Then, a comprehensive overview of computer vision applications for autonomous driving such as depth estimation, object detection, lane detection, and traffic sign recognition are discussed.
arXiv Detail & Related papers (2023-11-15T16:41:18Z) - LLM4Drive: A Survey of Large Language Models for Autonomous Driving [62.10344445241105]
Large language models (LLMs) have demonstrated abilities including understanding context, logical reasoning, and generating answers.
In this paper, we systematically review a research line about textitLarge Language Models for Autonomous Driving (LLM4AD).
arXiv Detail & Related papers (2023-11-02T07:23:33Z) - Vision Paper: Causal Inference for Interpretable and Robust Machine
Learning in Mobility Analysis [71.2468615993246]
Building intelligent transportation systems requires an intricate combination of artificial intelligence and mobility analysis.
The past few years have seen rapid development in transportation applications using advanced deep neural networks.
This vision paper emphasizes research challenges in deep learning-based mobility analysis that require interpretability and robustness.
arXiv Detail & Related papers (2022-10-18T17:28:58Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
We introduce COOPERNAUT, an end-to-end learning model that uses cross-vehicle perception for vision-based cooperative driving.
Our experiments on AutoCastSim suggest that our cooperative perception driving models lead to a 40% improvement in average success rate.
arXiv Detail & Related papers (2022-05-04T17:55:12Z) - Audiovisual Affect Assessment and Autonomous Automobiles: Applications [0.0]
This contribution aims to foresee according challenges and provide potential avenues towards affect modelling in a multimodal "audiovisual plus x" on the road context.
From the technical end, this concerns holistic passenger modelling and reliable diarisation of the individuals in a vehicle.
In conclusion, automated affect analysis has just matured to the point of applicability in autonomous vehicles in first selected use-cases.
arXiv Detail & Related papers (2022-03-14T20:39:02Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
We study a new task, safety-aware motion prediction with unseen vehicles for autonomous driving.
Unlike the existing trajectory prediction task for seen vehicles, we aim at predicting an occupancy map.
Our approach is the first one that can predict the existence of unseen vehicles in most cases.
arXiv Detail & Related papers (2021-09-03T13:33:33Z) - Artificial Intelligence Methods in In-Cabin Use Cases: A Survey [4.896568671169519]
The functionality inside the vehicle cabin plays a key role in ensuring a safe and pleasant journey for driver and passenger alike.
Recent advances in the field of artificial intelligence (AI) have enabled a whole range of new applications and assistance systems to solve automated problems in the vehicle cabin.
Results from the surveyed works show that AI technology has a promising future in tackling in-cabin tasks within the autonomous driving aspect.
arXiv Detail & Related papers (2021-01-06T15:08:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.