論文の概要: PGTNet: A Process Graph Transformer Network for Remaining Time Prediction of Business Process Instances
- arxiv url: http://arxiv.org/abs/2404.06267v1
- Date: Tue, 9 Apr 2024 12:45:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 14:40:35.225637
- Title: PGTNet: A Process Graph Transformer Network for Remaining Time Prediction of Business Process Instances
- Title(参考訳): PGTNet:ビジネスプロセスインスタンスの時間予測を保持するプロセスグラフトランスフォーマネットワーク
- Authors: Keyvan Amiri Elyasi, Han van der Aa, Heiner Stuckenschmidt,
- Abstract要約: 本稿では,イベントログをグラフデータセットに変換するPGTNetを提案する。
我々は、プロセスグラフトランスフォーマーネットワークのトレーニングにグラフ指向のデータを活用し、ビジネスプロセスインスタンスの残り時間を予測します。
- 参考スコア(独自算出の注目度): 7.724546575875487
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present PGTNet, an approach that transforms event logs into graph datasets and leverages graph-oriented data for training Process Graph Transformer Networks to predict the remaining time of business process instances. PGTNet consistently outperforms state-of-the-art deep learning approaches across a diverse range of 20 publicly available real-world event logs. Notably, our approach is most promising for highly complex processes, where existing deep learning approaches encounter difficulties stemming from their limited ability to learn control-flow relationships among process activities and capture long-range dependencies. PGTNet addresses these challenges, while also being able to consider multiple process perspectives during the learning process.
- Abstract(参考訳): 本稿では,イベントログをグラフデータセットに変換し,プロセスグラフトランスフォーマーネットワークをトレーニングするためのグラフ指向データを活用するPGTNetを提案する。
PGTNetは、現在使用されている20の現実世界のイベントログにおいて、最先端のディープラーニングアプローチを一貫して上回っている。
既存のディープラーニングアプローチは、プロセスアクティビティ間の制御-フロー関係を学習し、長距離依存関係をキャプチャする能力に制限があるため、困難に直面する。
PGTNetはこれらの課題に対処し、学習プロセス中に複数のプロセス視点を考慮できる。
関連論文リスト
- Instance-Aware Graph Prompt Learning [71.26108600288308]
本稿では,インスタンス対応グラフプロンプト学習(IA-GPL)について紹介する。
このプロセスでは、軽量アーキテクチャを使用して各インスタンスの中間プロンプトを生成する。
複数のデータセットと設定で実施された実験は、最先端のベースラインと比較して、IA-GPLの優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-11-26T18:38:38Z) - Learning Logic Specifications for Policy Guidance in POMDPs: an
Inductive Logic Programming Approach [57.788675205519986]
我々は任意の解法によって生成されるPOMDP実行から高品質なトレースを学習する。
我々は、データと時間効率のIndu Logic Programming(ILP)を利用して、解釈可能な信念に基づくポリシー仕様を生成する。
ASP(Answer Set Programming)で表現された学習は、ニューラルネットワークよりも優れた性能を示し、より少ない計算時間で最適な手作りタスクに類似していることを示す。
論文 参考訳(メタデータ) (2024-02-29T15:36:01Z) - Process-BERT: A Framework for Representation Learning on Educational
Process Data [68.8204255655161]
本稿では,教育プロセスデータの表現を学習するためのフレームワークを提案する。
我々のフレームワークは、BERT型の目的を用いて、シーケンシャルなプロセスデータから表現を学習する事前学習ステップで構成されています。
当社のフレームワークは,2019年国のレポートカードデータマイニングコンペティションデータセットに適用しています。
論文 参考訳(メタデータ) (2022-04-28T16:07:28Z) - Where Is My Training Bottleneck? Hidden Trade-Offs in Deep Learning
Preprocessing Pipelines [77.45213180689952]
ディープラーニングにおける前処理パイプラインは、トレーニングプロセスを忙しくするための十分なデータスループットの提供を目的としている。
エンドツーエンドのディープラーニングパイプラインのためのデータセットを効率的に準備する新たな視点を導入する。
チューニングされていないシステムに比べてスループットが3倍から13倍に向上する。
論文 参考訳(メタデータ) (2022-02-17T14:31:58Z) - Multivariate Business Process Representation Learning utilizing Gramian
Angular Fields and Convolutional Neural Networks [0.0]
データの意味のある表現を学習することは、機械学習の重要な側面である。
予測的プロセス分析では、プロセスインスタンスのすべての説明的特性を利用できるようにすることが不可欠である。
本稿では,ビジネスプロセスインスタンスの表現学習のための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2021-06-15T10:21:14Z) - A Query Language for Summarizing and Analyzing Business Process Data [6.952242545832663]
プロセスグラフ(Process Graph)やプロセスグラフ(Process Graph)といった,プロセスデータをグラフとしてモデル化するフレームワークを提案する。
プロセスグラフのクエリ、探索、分析のためのスケーラブルなアーキテクチャを実装しました。
論文 参考訳(メタデータ) (2021-05-23T11:07:53Z) - Better than the Best: Gradient-based Improper Reinforcement Learning for
Network Scheduling [60.48359567964899]
パケット遅延を最小限に抑えるため,制約付き待ち行列ネットワークにおけるスケジューリングの問題を考える。
我々は、利用可能な原子ポリシーよりも優れたスケジューラを生成するポリシー勾配に基づく強化学習アルゴリズムを使用する。
論文 参考訳(メタデータ) (2021-05-01T10:18:34Z) - ProcessTransformer: Predictive Business Process Monitoring with
Transformer Network [0.06445605125467573]
本稿では,イベントログから高レベル表現を注目ネットワークで学習するプロセストランスフォーマーを提案する。
本モデルでは,複数イベントシーケンスと対応する出力の依存関係を確立するための自己保持機構を,長期記憶に取り入れた。
論文 参考訳(メタデータ) (2021-04-01T18:58:46Z) - Online Graph Learning under Smoothness Priors [8.826181951806928]
探索グラフ上でスムーズなストリーミング観測を前提として,オンラインネットワークトポロジ推論のための新しいアルゴリズムを開発した。
私たちの目標は、グラフ信号を順次処理することで、メモリと計算コストを維持しながら(おそらく)時間変化のネットワークトポロジを追跡することです。
合成市場と実際の金融市場データの両方を用いたコンピュータシミュレーションは,提案アルゴリズムの有効性を示す。
論文 参考訳(メタデータ) (2021-03-05T15:42:53Z) - Predictive Process Model Monitoring using Recurrent Neural Networks [2.4029798593292706]
本稿では,予測モニタリングの中間地点となるプロセス・アズ・ムーブズ(PAM)について紹介する。
プロセス実行トレースのさまざまなウィンドウにおけるアクティビティ間の宣言的なプロセス制約をキャプチャすることで実現します。
高次元入力に適した様々なリカレントニューラルネットワークトポロジを使用して、ウィンドウをタイムステップとしてプロセスモデルの進化をモデル化する。
論文 参考訳(メタデータ) (2020-11-05T13:57:33Z) - A System for Real-Time Interactive Analysis of Deep Learning Training [66.06880335222529]
現在利用可能なシステムは、トレーニングプロセスが始まる前に指定しなければならないログデータのみを監視することに限定されている。
本稿では,リアルタイム情報を生成するライブプロセス上で対話型クエリを実行可能にするシステムを提案する。
論文 参考訳(メタデータ) (2020-01-05T11:33:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。