論文の概要: Predictive Process Model Monitoring using Recurrent Neural Networks
- arxiv url: http://arxiv.org/abs/2011.02819v2
- Date: Fri, 22 Jan 2021 14:15:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-29 12:23:56.495512
- Title: Predictive Process Model Monitoring using Recurrent Neural Networks
- Title(参考訳): リカレントニューラルネットワークを用いた予測プロセスモデルモニタリング
- Authors: Johannes De Smedt, Jochen De Weerdt, Junichiro Mori and Masanao Ochi
- Abstract要約: 本稿では,予測モニタリングの中間地点となるプロセス・アズ・ムーブズ(PAM)について紹介する。
プロセス実行トレースのさまざまなウィンドウにおけるアクティビティ間の宣言的なプロセス制約をキャプチャすることで実現します。
高次元入力に適した様々なリカレントニューラルネットワークトポロジを使用して、ウィンドウをタイムステップとしてプロセスモデルの進化をモデル化する。
- 参考スコア(独自算出の注目度): 2.4029798593292706
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The field of predictive process monitoring focuses on modelling future
characteristics of running business process instances, typically by either
predicting the outcome of particular objectives (e.g. completion (time), cost),
or next-in-sequence prediction (e.g. what is the next activity to execute).
This paper introduces Processes-As-Movies (PAM), a technique that provides a
middle ground between these predictive monitoring. It does so by capturing
declarative process constraints between activities in various windows of a
process execution trace, which represent a declarative process model at
subsequent stages of execution. This high-dimensional representation of a
process model allows the application of predictive modelling on how such
constraints appear and vanish throughout a process' execution. Various
recurrent neural network topologies tailored to high-dimensional input are used
to model the process model evolution with windows as time steps, including
encoder-decoder long short-term memory networks, and convolutional long
short-term memory networks. Results show that these topologies are very
effective in terms of accuracy and precision to predict a process model's
future state, which allows process owners to simultaneously verify what linear
temporal logic rules hold in a predicted process window (objective-based), and
verify what future execution traces are allowed by all the constraints together
(trace-based).
- Abstract(参考訳): 予測プロセス監視の分野は、通常、特定の目的(例えば、完了(時間)、コスト)の結果を予測するか、次のシーケンス予測(例えば、実行すべき次のアクティビティ)によって、実行中のビジネスプロセスインスタンスの将来の特性をモデル化することに焦点を当てている。
本稿では,これらの予測モニタリングの中間的基盤を提供する手法であるprocesss-as-movies (pam)を提案する。
プロセス実行トレースのさまざまなウィンドウにおけるアクティビティ間の宣言的プロセス制約をキャプチャすることで、実行後の段階で宣言的プロセスモデルを表現する。
このプロセスモデルの高次元表現は、プロセスの実行中にそのような制約がどのように出現し消滅するかを予測モデルの適用を可能にします。
高次元入力に合わせた様々なリカレントニューラルネットワークトポロジは、エンコーダ-デコーダ長短期メモリネットワークや畳み込み長短期メモリネットワークなど、windowsによるプロセスモデルの進化を時間ステップとしてモデル化するために使用される。
結果として、これらのトポロジはプロセスモデルの将来の状態を予測するための精度と精度の点で非常に効果的であることが示され、これによりプロセス所有者は、予測されたプロセスウィンドウ(オブジェクトベース)に保持される線形時間論理ルールを同時に検証し、全ての制約(トレースベース)が持つ将来の実行トレースを検証できます。
関連論文リスト
- COrAL: Order-Agnostic Language Modeling for Efficient Iterative Refinement [80.18490952057125]
反復改良は、複雑なタスクにおける大規模言語モデル(LLM)の能力を高める効果的なパラダイムとして登場した。
我々はこれらの課題を克服するために、コンテキストワイズ順序非依存言語モデリング(COrAL)を提案する。
当社のアプローチでは、管理可能なコンテキストウィンドウ内で複数のトークン依存関係をモデル化しています。
論文 参考訳(メタデータ) (2024-10-12T23:56:19Z) - Performance-Preserving Event Log Sampling for Predictive Monitoring [0.3425341633647624]
本稿では,予測モデルのためのトレーニングプロセスインスタンスのサンプリングを可能にするインスタンス選択手法を提案する。
インスタンスの選択手順により、次のアクティビティのトレーニング速度が大幅に向上し、残り時間の予測が可能であることを示す。
論文 参考訳(メタデータ) (2023-01-18T16:07:56Z) - Avoiding Post-Processing with Event-Based Detection in Biomedical
Signals [69.34035527763916]
学習対象としてイベントを直接扱うイベントベースのモデリングフレームワークを提案する。
イベントベースのモデリング(後処理なし)は、広範囲な後処理を伴うエポックベースのモデリングと同等以上のパフォーマンスを示す。
論文 参考訳(メタデータ) (2022-09-22T13:44:13Z) - Embedding Graph Convolutional Networks in Recurrent Neural Networks for
Predictive Monitoring [0.0]
本稿では,グラフ畳み込みネットワークとリカレントニューラルネットワークに基づくアプローチを提案する。
実生活のイベントログを実験的に評価したところ、我々のアプローチはより一貫性があり、最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2021-12-17T17:30:30Z) - How do I update my model? On the resilience of Predictive Process
Monitoring models to change [15.29342790344802]
予測プロセスモニタリング技術は通常、過去のプロセス実行に基づいて予測モデルを構築し、それを新しい進行中のケースの将来を予測するために使用します。
これにより、予測的プロセスモニタリングは、実際の環境で動作するプロセスの変動に対処するには厳格すぎる。
予測モデルの定期的な再検討や漸進的な構築を可能にする3つの戦略の活用を評価した。
論文 参考訳(メタデータ) (2021-09-08T08:50:56Z) - On Contrastive Representations of Stochastic Processes [53.21653429290478]
プロセスの表現を学習することは、機械学習の新たな問題である。
本手法は,周期関数,3次元オブジェクト,動的プロセスの表現の学習に有効であることを示す。
論文 参考訳(メタデータ) (2021-06-18T11:00:24Z) - Process Model Forecasting Using Time Series Analysis of Event Sequence
Data [0.23099144596725568]
過去のイベントデータからプロセスモデル全体を予測する手法を開発しています。
本実装は,実世界のイベントログデータに対する手法の精度を示す。
論文 参考訳(メタデータ) (2021-05-03T18:00:27Z) - ProcessTransformer: Predictive Business Process Monitoring with
Transformer Network [0.06445605125467573]
本稿では,イベントログから高レベル表現を注目ネットワークで学習するプロセストランスフォーマーを提案する。
本モデルでは,複数イベントシーケンスと対応する出力の依存関係を確立するための自己保持機構を,長期記憶に取り入れた。
論文 参考訳(メタデータ) (2021-04-01T18:58:46Z) - CoCoMoT: Conformance Checking of Multi-Perspective Processes via SMT
(Extended Version) [62.96267257163426]
我々はCoCoMoT(Computing Conformance Modulo Theories)フレームワークを紹介する。
まず、純粋な制御フロー設定で研究したSATベースのエンコーディングを、データ認識ケースに持ち上げる方法を示す。
次に,プロパティ保存型クラスタリングの概念に基づく新しい前処理手法を提案する。
論文 参考訳(メタデータ) (2021-03-18T20:22:50Z) - Process Discovery for Structured Program Synthesis [70.29027202357385]
プロセスマイニングにおける中核的なタスクは、イベントログデータから正確なプロセスモデルを学ぶことを目的としたプロセス発見である。
本稿では,ターゲットプロセスモデルとして(ブロック-)構造化プログラムを直接使用することを提案する。
我々は,このような構造化プログラムプロセスモデルの発見に対して,新たなボトムアップ・アグリメティブ・アプローチを開発する。
論文 参考訳(メタデータ) (2020-08-13T10:33:10Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
イベントデータセットは、タイムライン上で不規則に発生するさまざまなタイプのイベントのシーケンスである。
基礎となる強度関数を推定するために,非パラメトリックディープニューラルネットワーク手法を提案する。
論文 参考訳(メタデータ) (2020-02-21T23:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。