Quantum State Generation with Structure-Preserving Diffusion Model
- URL: http://arxiv.org/abs/2404.06336v2
- Date: Sat, 25 May 2024 23:07:29 GMT
- Title: Quantum State Generation with Structure-Preserving Diffusion Model
- Authors: Yuchen Zhu, Tianrong Chen, Evangelos A. Theodorou, Xie Chen, Molei Tao,
- Abstract summary: This article considers the generative modeling of the (mixed) states of quantum systems.
The key contribution is an algorithmic innovation that respects the physical nature of quantum states.
- Score: 33.108168285414195
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This article considers the generative modeling of the (mixed) states of quantum systems, and an approach based on denoising diffusion model is proposed. The key contribution is an algorithmic innovation that respects the physical nature of quantum states. More precisely, the commonly used density matrix representation of mixed-state has to be complex-valued Hermitian, positive semi-definite, and trace one. Generic diffusion models, or other generative methods, may not be able to generate data that strictly satisfy these structural constraints, even if all training data do. To develop a machine learning algorithm that has physics hard-wired in, we leverage mirror diffusion and borrow the physical notion of von Neumann entropy to design a new map, for enabling strict structure-preserving generation. Both unconditional generation and conditional generation via classifier-free guidance are experimentally demonstrated efficacious, the latter enabling the design of new quantum states when generated on unseen labels.
Related papers
- Discrete Markov Probabilistic Models [8.206838934494513]
The Discrete Markov Probabilistic Model (DMPM) is a novel algorithm for discrete data generation.
The intensity of the time-reversal process is governed by a discrete analogue of the classical score function.
This work bridges theoretical foundations and practical applications, advancing the development of effective and theoretically grounded discrete generative modeling.
arXiv Detail & Related papers (2025-02-11T20:36:23Z) - Quantum Latent Diffusion Models [65.16624577812436]
We propose a potential version of a quantum diffusion model that leverages the established idea of classical latent diffusion models.
This involves using a traditional autoencoder to reduce images, followed by operations with variational circuits in the latent space.
The results demonstrate an advantage in using a quantum version, as evidenced by obtaining better metrics for the images generated by the quantum version.
arXiv Detail & Related papers (2025-01-19T21:24:02Z) - Exact Model Reduction for Continuous-Time Open Quantum Dynamics [0.0]
We consider finite-dimensional many-body quantum systems described by time-independent Hamiltonians and Markovian master equations.
We present a systematic method for constructing smaller-dimensional, reduced models that reproduce the time evolution of a set of initial conditions or observables of interest.
arXiv Detail & Related papers (2024-12-06T15:00:58Z) - Quantum-Noise-Driven Generative Diffusion Models [1.6385815610837167]
We propose three quantum-noise-driven generative diffusion models that could be experimentally tested on real quantum systems.
The idea is to harness unique quantum features, in particular the non-trivial interplay among coherence, entanglement and noise.
Our results are expected to pave the way for new quantum-inspired or quantum-based generative diffusion algorithms.
arXiv Detail & Related papers (2023-08-23T09:09:32Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion [66.21290235237808]
We introduce an energy constrained diffusion model which encodes a batch of instances from a dataset into evolutionary states.
We provide rigorous theory that implies closed-form optimal estimates for the pairwise diffusion strength among arbitrary instance pairs.
Experiments highlight the wide applicability of our model as a general-purpose encoder backbone with superior performance in various tasks.
arXiv Detail & Related papers (2023-01-23T15:18:54Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
Generative modeling is a widely accepted natural use case for quantum computers.
We construct a simple and unambiguous approach to probe practical quantum advantage for generative modeling by measuring the algorithm's generalization performance.
Our simulation results show that our quantum-inspired models have up to a $68 times$ enhancement in generating unseen unique and valid samples.
arXiv Detail & Related papers (2022-01-21T16:35:35Z) - A physics-informed operator regression framework for extracting
data-driven continuum models [0.0]
We present a framework for discovering continuum models from high fidelity molecular simulation data.
Our approach applies a neural network parameterization of governing physics in modal space.
We demonstrate the effectiveness of our framework for a variety of physics, including local and nonlocal diffusion processes and single and multiphase flows.
arXiv Detail & Related papers (2020-09-25T01:13:51Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z) - Gaussian Process States: A data-driven representation of quantum
many-body physics [59.7232780552418]
We present a novel, non-parametric form for compactly representing entangled many-body quantum states.
The state is found to be highly compact, systematically improvable and efficient to sample.
It is also proven to be a universal approximator' for quantum states, able to capture any entangled many-body state with increasing data set size.
arXiv Detail & Related papers (2020-02-27T15:54:44Z) - Embedded-physics machine learning for coarse-graining and collective
variable discovery without data [3.222802562733787]
We present a novel learning framework that consistently embeds underlying physics.
We propose a novel objective based on reverse Kullback-Leibler divergence that fully incorporates the available physics in the form of the atomistic force field.
We demonstrate the algorithmic advances in terms of predictive ability and the physical meaning of the revealed CVs for a bimodal potential energy function and the alanine dipeptide.
arXiv Detail & Related papers (2020-02-24T10:28:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.