Quantum Generative Models for Image Generation: Insights from MNIST and MedMNIST
- URL: http://arxiv.org/abs/2504.00034v2
- Date: Thu, 03 Apr 2025 17:40:26 GMT
- Title: Quantum Generative Models for Image Generation: Insights from MNIST and MedMNIST
- Authors: Chi-Sheng Chen, Wei An Hou, Hsiang-Wei Hu, Zhen-Sheng Cai,
- Abstract summary: We introduce two novel noise strategies: intrinsic quantum-generated noise and a tailored noise scheduling mechanism.<n>We evaluate our model on MNIST and MedMNIST datasets to examine its feasibility and performance.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum generative models offer a promising new direction in machine learning by leveraging quantum circuits to enhance data generation capabilities. In this study, we propose a hybrid quantum-classical image generation framework that integrates variational quantum circuits into a diffusion-based model. To improve training dynamics and generation quality, we introduce two novel noise strategies: intrinsic quantum-generated noise and a tailored noise scheduling mechanism. Our method is built upon a lightweight U-Net architecture, with the quantum layer embedded in the bottleneck module to isolate its effect. We evaluate our model on MNIST and MedMNIST datasets to examine its feasibility and performance. Notably, our results reveal that under limited data conditions (fewer than 100 training images), the quantum-enhanced model generates images with higher perceptual quality and distributional similarity than its classical counterpart using the same architecture. While the quantum model shows advantages on grayscale data such as MNIST, its performance is more nuanced on complex, color-rich datasets like PathMNIST. These findings highlight both the potential and current limitations of quantum generative models and lay the groundwork for future developments in low-resource and biomedical image generation.
Related papers
- Quantum Latent Diffusion Models [65.16624577812436]
We propose a potential version of a quantum diffusion model that leverages the established idea of classical latent diffusion models.<n>This involves using a traditional autoencoder to reduce images, followed by operations with variational circuits in the latent space.<n>The results demonstrate an advantage in using a quantum version, as evidenced by obtaining better metrics for the images generated by the quantum version.
arXiv Detail & Related papers (2025-01-19T21:24:02Z) - Quantum Diffusion Model for Quark and Gluon Jet Generation [3.129585931342323]
We introduce a novel diffusion model that benefits from quantum computing techniques.
We run evaluations on the structurally complex quark and gluon jets dataset from the Large Hadron Collider.
arXiv Detail & Related papers (2024-12-30T17:00:54Z) - Bayesian Quantum Amplitude Estimation [49.1574468325115]
We introduce BAE, a noise-aware Bayesian algorithm for quantum amplitude estimation.<n>We show that BAE achieves Heisenberg-limited estimation and benchmark it against other approaches.
arXiv Detail & Related papers (2024-12-05T18:09:41Z) - Mixed-State Quantum Denoising Diffusion Probabilistic Model [0.40964539027092906]
We propose a mixed-state quantum denoising diffusion probabilistic model (MSQuDDPM) to eliminate the need for scrambling unitaries.<n>MSQuDDPM integrates depolarizing noise channels in the forward diffusion process and parameterized quantum circuits with projective measurements in the backward denoising steps.<n>We evaluate MSQuDDPM on quantum ensemble generation tasks, demonstrating its successful performance.
arXiv Detail & Related papers (2024-11-26T17:20:58Z) - Quantum Generative Learning for High-Resolution Medical Image Generation [1.189046876525661]
Existing quantum generative adversarial networks (QGANs) fail to generate high-quality images due to their patch-based, pixel-wise learning approaches.
We propose a quantum image generative learning (QIGL) approach for high-quality medical image generation.
arXiv Detail & Related papers (2024-06-19T04:04:32Z) - Hybrid Quantum-Classical Normalizing Flow [5.85475369017678]
We propose a hybrid quantum-classical normalizing flow (HQCNF) model based on parameterized quantum circuits.
We test our model on the image generation problem.
Compared with other quantum generative models, such as quantum generative adversarial networks (QGAN), our model achieves lower (better) Fr'echet distance (FID) score.
arXiv Detail & Related papers (2024-05-22T16:37:22Z) - Photonic quantum generative adversarial networks for classical data [0.0]
In generative learning, models are trained to produce new samples that follow the distribution of the target data.
We present a quantum GAN based on linear optical circuits and Fock-space encoding.
We demonstrate that the model can learn to generate images by training the model end-to-end experimentally on a single-photon quantum processor.
arXiv Detail & Related papers (2024-05-09T18:00:10Z) - Towards Efficient Quantum Hybrid Diffusion Models [68.43405413443175]
We propose a new methodology to design quantum hybrid diffusion models.
We propose two possible hybridization schemes combining quantum computing's superior generalization with classical networks' modularity.
arXiv Detail & Related papers (2024-02-25T16:57:51Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Generative quantum machine learning via denoising diffusion
probabilistic models [17.439525936236166]
We propose the quantum denoising diffusion probabilistic model (QuDDPM) to enable efficiently trainable generative learning of quantum data.
We provide bounds on the learning error and demonstrate QuDDPM's capability in learning correlated quantum noise model, quantum many-body phases, and topological structure of quantum data.
arXiv Detail & Related papers (2023-10-09T17:03:08Z) - Fighting noise with noise: a stochastic projective quantum eigensolver [0.0]
We present a novel approach to estimating physical observables which leads to a two order of magnitude reduction in the required sampling of the quantum state.
The method can be applied to excited-state calculations and simulation for general chemistry on quantum devices.
arXiv Detail & Related papers (2023-06-26T09:22:06Z) - Quantum machine learning for image classification [39.58317527488534]
This research introduces two quantum machine learning models that leverage the principles of quantum mechanics for effective computations.
Our first model, a hybrid quantum neural network with parallel quantum circuits, enables the execution of computations even in the noisy intermediate-scale quantum era.
A second model introduces a hybrid quantum neural network with a Quanvolutional layer, reducing image resolution via a convolution process.
arXiv Detail & Related papers (2023-04-18T18:23:20Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
We build over a proposed framework for evaluating the generalization performance of generative models.
We establish the first comparative race towards practical quantum advantage (PQA) between classical and quantum generative models.
Our results suggest that QCBMs are more efficient in the data-limited regime than the other state-of-the-art classical generative models.
arXiv Detail & Related papers (2023-03-27T22:48:28Z) - Noise-assisted digital quantum simulation of open systems [1.3124513975412255]
We present a novel approach that capitalizes on the intrinsic noise of quantum devices to reduce the computational resources required for simulating open quantum systems.
Specifically, we selectively enhance or reduce decoherence rates in the quantum circuit to achieve the desired simulation of open system dynamics.
arXiv Detail & Related papers (2023-02-28T14:21:43Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Pulse-level noisy quantum circuits with QuTiP [53.356579534933765]
We introduce new tools in qutip-qip, QuTiP's quantum information processing package.
These tools simulate quantum circuits at the pulse level, leveraging QuTiP's quantum dynamics solvers and control optimization features.
We show how quantum circuits can be compiled on simulated processors, with control pulses acting on a target Hamiltonian.
arXiv Detail & Related papers (2021-05-20T17:06:52Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.