論文の概要: CausalBench: A Comprehensive Benchmark for Causal Learning Capability of Large Language Models
- arxiv url: http://arxiv.org/abs/2404.06349v1
- Date: Tue, 9 Apr 2024 14:40:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 14:21:03.575981
- Title: CausalBench: A Comprehensive Benchmark for Causal Learning Capability of Large Language Models
- Title(参考訳): CausalBench: 大規模言語モデルの因果学習能力に関する総合ベンチマーク
- Authors: Yu Zhou, Xingyu Wu, Beicheng Huang, Jibin Wu, Liang Feng, Kay Chen Tan,
- Abstract要約: 因果性は、現実世界のシナリオにおけるデータ分散の背後にある基本的な原則を明らかにする。
大規模言語モデル(LLM)は、アウトプットの説明、新しいエビデンスへの適応、反事実の生成などを通じて、因果関係がそれらの効果に直接影響を与えることを理解することができる。
本稿では,LLMの因果理解能力を評価するために,CausalBenchという包括的なベンチマークを提案する。
- 参考スコア(独自算出の注目度): 27.362012903540492
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causality reveals fundamental principles behind data distributions in real-world scenarios, and the capability of large language models (LLMs) to understand causality directly impacts their efficacy across explaining outputs, adapting to new evidence, and generating counterfactuals. With the proliferation of LLMs, the evaluation of this capacity is increasingly garnering attention. However, the absence of a comprehensive benchmark has rendered existing evaluation studies being straightforward, undiversified, and homogeneous. To address these challenges, this paper proposes a comprehensive benchmark, namely CausalBench, to evaluate the causality understanding capabilities of LLMs. Originating from the causal research community, CausalBench encompasses three causal learning-related tasks, which facilitate a convenient comparison of LLMs' performance with classic causal learning algorithms. Meanwhile, causal networks of varying scales and densities are integrated in CausalBench, to explore the upper limits of LLMs' capabilities across task scenarios of varying difficulty. Notably, background knowledge and structured data are also incorporated into CausalBench to thoroughly unlock the underlying potential of LLMs for long-text comprehension and prior information utilization. Based on CausalBench, this paper evaluates nineteen leading LLMs and unveils insightful conclusions in diverse aspects. Firstly, we present the strengths and weaknesses of LLMs and quantitatively explore the upper limits of their capabilities across various scenarios. Meanwhile, we further discern the adaptability and abilities of LLMs to specific structural networks and complex chain of thought structures. Moreover, this paper quantitatively presents the differences across diverse information sources and uncovers the gap between LLMs' capabilities in causal understanding within textual contexts and numerical domains.
- Abstract(参考訳): 因果性(Causality)は、現実世界のシナリオにおけるデータ分散の背後にある基本的な原則を明らかにし、因果性を理解する大きな言語モデル(LLM)の能力は、アウトプットの説明、新しいエビデンスへの適応、反事実の生成などを通じて、それらの有効性に直接影響する。
LLMの増殖に伴い、この能力の評価はますます注目を集めている。
しかし、包括的なベンチマークがないため、既存の評価研究は単純で、多様性がなく、均一である。
これらの課題に対処するために,LLMの因果理解能力を評価するために,CausalBenchという包括的なベンチマークを提案する。
因果研究コミュニティから派生したCausalBenchは、3つの因果学習関連タスクを含んでいる。
一方、様々なスケールと密度の因果ネットワークをCausalBenchに統合し、様々な難易度のタスクシナリオにまたがるLLMの能力の上限を探索する。
特に、背景知識と構造化データもCausalBenchに組み込まれ、LLMの基盤となる可能性を長期的理解と事前情報利用のために完全に解き放つ。
CausalBenchをベースとして,19のLLMの評価を行い,多様な側面における洞察に富んだ結論を明らかにした。
まず, LLMの長所と短所を示し, 様々なシナリオにおいて, それらの能力の上限を定量的に検討する。
一方、LLMの特定の構造ネットワークや複雑な思考構造への適応性や能力についてさらに明らかにする。
さらに,多種多様な情報ソース間の差異を定量的に検討し,テキストコンテキストと数値領域における因果理解におけるLLMの能力のギャップを明らかにする。
関連論文リスト
- Language Agents Meet Causality -- Bridging LLMs and Causal World Models [50.79984529172807]
因果表現学習を大規模言語モデルと統合する枠組みを提案する。
このフレームワークは、自然言語表現に関連付けられた因果変数を持つ因果世界モデルを学ぶ。
本研究では,時間的スケールと環境の複雑さを考慮した因果推論と計画課題の枠組みを評価する。
論文 参考訳(メタデータ) (2024-10-25T18:36:37Z) - From Pre-training Corpora to Large Language Models: What Factors Influence LLM Performance in Causal Discovery Tasks? [51.42906577386907]
本研究では,因果発見タスクにおけるLarge Language Models(LLM)の性能に影響を与える要因について検討する。
因果関係の頻度が高いことは、より良いモデル性能と相関し、トレーニング中に因果関係の情報に広範囲に暴露することで、因果関係の発見能力を高めることを示唆している。
論文 参考訳(メタデータ) (2024-07-29T01:45:05Z) - How Likely Do LLMs with CoT Mimic Human Reasoning? [31.86489714330338]
CoT(Chain-of-Thought)は,Large Language Models(LLMs)から推論能力を引き出すための,有望なテクニックとして登場した。
本稿では,LLMの推論過程を人間と比較することにより,その基盤となるメカニズムを診断する。
実験により, LLMは因果連鎖から逸脱することが多く, 相関関係や潜在的な整合性誤差が生じることが判明した。
論文 参考訳(メタデータ) (2024-02-25T10:13:04Z) - Causal Graph Discovery with Retrieval-Augmented Generation based Large Language Models [23.438388321411693]
因果グラフの回復は、伝統的に統計的推定に基づく手法や、興味のある変数に関する個人の知識に基づいて行われる。
本稿では,大言語モデル(LLM)を利用して,一般的な因果グラフ復元タスクにおける因果関係を推定する手法を提案する。
論文 参考訳(メタデータ) (2024-02-23T13:02:10Z) - Direct Evaluation of Chain-of-Thought in Multi-hop Reasoning with Knowledge Graphs [52.42505579545893]
大規模言語モデル(LLM)は、回答とともにチェーン・オブ・シントの説明を生成するよう促されたとき、強い推論能力を示す。
本稿では,LLMの推論知識と生成したCoTの精度を評価するために,新しい識別的・生成的CoT評価パラダイムを提案する。
論文 参考訳(メタデータ) (2024-02-17T05:22:56Z) - Is Knowledge All Large Language Models Needed for Causal Reasoning? [11.476877330365664]
本稿では,大規模言語モデル(LLM)の因果推論について,人工知能の進化における解釈可能性と信頼性を高めるために検討する。
本稿では,do-operativesを利用した新たな因果帰属モデルを提案する。
論文 参考訳(メタデータ) (2023-12-30T04:51:46Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
本調査は,大規模言語モデル(LLM)における事実性の重要課題に対処する。
LLMが様々な領域にまたがる応用を見出すにつれ、その出力の信頼性と正確性は重要となる。
論文 参考訳(メタデータ) (2023-10-11T14:18:03Z) - Investigating the Factual Knowledge Boundary of Large Language Models with Retrieval Augmentation [109.8527403904657]
大規模言語モデル(LLM)は,その知識に対する信頼度が低く,内部知識と外部知識の衝突をうまく扱えないことを示す。
検索の強化は、LLMの知識境界に対する認識を高める効果的なアプローチであることが証明されている。
本稿では,文書を動的に活用するための簡易な手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T16:46:10Z) - From Query Tools to Causal Architects: Harnessing Large Language Models
for Advanced Causal Discovery from Data [19.264745484010106]
大規模言語モデル (LLM) は、多くの社会的影響のある領域における概念間の因果解析の優れた能力を示す。
様々な因果発見および推論タスクにおけるLLM性能に関する最近の研究は、因果関係の古典的な3段階の枠組みに新たなはしごを生じさせている。
本稿では,知識に基づくLLM因果解析とデータ駆動因果構造学習を組み合わせた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2023-06-29T12:48:00Z) - Causal Reasoning and Large Language Models: Opening a New Frontier for Causality [29.433401785920065]
大規模言語モデル(LLM)は、高い確率で因果引数を生成することができる。
LLMは人間のドメインの専門家によって因果解析のセットアップの労力を節約するために使われる。
論文 参考訳(メタデータ) (2023-04-28T19:00:43Z) - Search-in-the-Chain: Interactively Enhancing Large Language Models with
Search for Knowledge-intensive Tasks [121.74957524305283]
本稿では、情報検索(IR)とLarge Language Model(LLM)のインタラクションのための、textbfSearch-in-the-Chain(SearChain)という新しいフレームワークを提案する。
実験の結果、SearChainは複雑な知識集約タスクにおける最先端のベースラインを上回っていることがわかった。
論文 参考訳(メタデータ) (2023-04-28T10:15:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。