論文の概要: LLM Cannot Discover Causality, and Should Be Restricted to Non-Decisional Support in Causal Discovery
- arxiv url: http://arxiv.org/abs/2506.00844v1
- Date: Sun, 01 Jun 2025 05:38:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 21:47:33.696617
- Title: LLM Cannot Discover Causality, and Should Be Restricted to Non-Decisional Support in Causal Discovery
- Title(参考訳): LLMは因果性を明らかにすることができず、因果発見における非決定的支援に制限されるべきである
- Authors: Xingyu Wu, Kui Yu, Jibin Wu, Kay Chen Tan,
- Abstract要約: LLMの自己回帰的相関モデルが本質的に因果推論の理論的根拠を欠いていることを実証する。
我々は、故意にプロンプトエンジニアリングが彼らの業績を誇張し、現在の文献の多くで報告された一貫した好ましい結果を説明するのに役立つことを示している。
我々は,LLMを鼻で適用することから,因果発見の根本原理を尊重する専門的なモデルや訓練方法の開発に焦点を移すことをコミュニティに求めて結論付けた。
- 参考スコア(独自算出の注目度): 30.24849564413826
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper critically re-evaluates LLMs' role in causal discovery and argues against their direct involvement in determining causal relationships. We demonstrate that LLMs' autoregressive, correlation-driven modeling inherently lacks the theoretical grounding for causal reasoning and introduces unreliability when used as priors in causal discovery algorithms. Through empirical studies, we expose the limitations of existing LLM-based methods and reveal that deliberate prompt engineering (e.g., injecting ground-truth knowledge) could overstate their performance, helping to explain the consistently favorable results reported in much of the current literature. Based on these findings, we strictly confined LLMs' role to a non-decisional auxiliary capacity: LLMs should not participate in determining the existence or directionality of causal relationships, but can assist the search process for causal graphs (e.g., LLM-based heuristic search). Experiments across various settings confirm that, by strictly isolating LLMs from causal decision-making, LLM-guided heuristic search can accelerate the convergence and outperform both traditional and LLM-based methods in causal structure learning. We conclude with a call for the community to shift focus from naively applying LLMs to developing specialized models and training method that respect the core principles of causal discovery.
- Abstract(参考訳): 本稿では,LLMの因果発見における役割を批判的に再評価し,因果関係決定への直接的な関与について論じる。
本研究では,LLMの自己回帰的相関モデルには因果推論の理論的根拠が欠如しており,因果探索アルゴリズムの先行として使用する場合の信頼性の低下を実証する。
実験的な研究を通じて、既存のLLM手法の限界を明らかにし、故意に急進的なエンジニアリング(例えば、根本的知識を注入するなど)が彼らの業績を誇張し、現在の文献の多くで報告されている一貫した好ましい結果を説明するのに役立つことを明らかにした。
LLMは因果関係の存在や方向の決定に参画するものではなく、因果グラフ(例えば、LLMに基づくヒューリスティック検索)の探索プロセスを支援することができる。
様々な実験により、LLMを因果決定から厳密に分離することにより、LLM誘導ヒューリスティックサーチが収束を加速し、因果構造学習における従来のLLM法とLLM法の両方より優れていることが確認された。
我々は,LLMを鼻で適用することから,因果発見の根本原理を尊重する専門的なモデルや訓練方法の開発に焦点を移すことをコミュニティに求めて結論付けた。
関連論文リスト
- Mapping the Minds of LLMs: A Graph-Based Analysis of Reasoning LLM [11.181783720439563]
大規模言語モデル(LLM)は、拡張されたChain-of-Thought(CoT)生成を通じて洗練された推論能力を示す。
RLMは、数発のプロンプトによる性能劣化など、直感的で不安定な動作を示すことが多い。
RLMの推論過程をより良くモデル化するための統一的なグラフベース分析フレームワークを提案する。
論文 参考訳(メタデータ) (2025-05-20T03:54:57Z) - LLMs are Greedy Agents: Effects of RL Fine-tuning on Decision-Making Abilities [21.42711537107199]
我々は,Large Language Models (LLMs) が意思決定シナリオにおいてサブ最適に機能する理由を考察する。
自己生成型CoT論理の強化学習(Reinforcement Learning, RL)による微調整によるこれらの欠点の緩和を提案する。
論文 参考訳(メタデータ) (2025-04-22T17:57:14Z) - R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning [87.30285670315334]
textbfR1-Searcherは、大規模言語モデルの検索能力を高めるために設計された、2段階の結果に基づく新しいRLアプローチである。
本フレームワークは, コールドスタート時に, プロセス報酬や蒸留を必要とせず, RLのみに依存している。
提案手法は, クローズドソースGPT-4o-miniと比較して, 従来の強力なRAG法よりも有意に優れていた。
論文 参考訳(メタデータ) (2025-03-07T17:14:44Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - CausalBench: A Comprehensive Benchmark for Causal Learning Capability of LLMs [27.362012903540492]
因果関係を理解する能力は、大言語モデル(LLM)の出力説明と反実的推論の能力に大きな影響を及ぼす。
因果関係を理解する能力は、大言語モデル(LLM)の出力説明と反実的推論の能力に大きな影響を及ぼす。
論文 参考訳(メタデータ) (2024-04-09T14:40:08Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
本調査は,大規模言語モデル(LLM)における事実性の重要課題に対処する。
LLMが様々な領域にまたがる応用を見出すにつれ、その出力の信頼性と正確性は重要となる。
論文 参考訳(メタデータ) (2023-10-11T14:18:03Z) - Causal Reasoning and Large Language Models: Opening a New Frontier for Causality [29.433401785920065]
大規模言語モデル(LLM)は、高い確率で因果引数を生成することができる。
LLMは人間のドメインの専門家によって因果解析のセットアップの労力を節約するために使われる。
論文 参考訳(メタデータ) (2023-04-28T19:00:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。