Rethinking How to Evaluate Language Model Jailbreak
- URL: http://arxiv.org/abs/2404.06407v3
- Date: Tue, 7 May 2024 14:06:23 GMT
- Title: Rethinking How to Evaluate Language Model Jailbreak
- Authors: Hongyu Cai, Arjun Arunasalam, Leo Y. Lin, Antonio Bianchi, Z. Berkay Celik,
- Abstract summary: We propose three metrics, safeguard violation, informativeness, and relative truthfulness, to evaluate language model jailbreak.
We evaluate our metrics on a benchmark dataset produced from three malicious intent datasets and three jailbreak systems.
- Score: 16.301224741410312
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large language models (LLMs) have become increasingly integrated with various applications. To ensure that LLMs do not generate unsafe responses, they are aligned with safeguards that specify what content is restricted. However, such alignment can be bypassed to produce prohibited content using a technique commonly referred to as jailbreak. Different systems have been proposed to perform the jailbreak automatically. These systems rely on evaluation methods to determine whether a jailbreak attempt is successful. However, our analysis reveals that current jailbreak evaluation methods have two limitations. (1) Their objectives lack clarity and do not align with the goal of identifying unsafe responses. (2) They oversimplify the jailbreak result as a binary outcome, successful or not. In this paper, we propose three metrics, safeguard violation, informativeness, and relative truthfulness, to evaluate language model jailbreak. Additionally, we demonstrate how these metrics correlate with the goal of different malicious actors. To compute these metrics, we introduce a multifaceted approach that extends the natural language generation evaluation method after preprocessing the response. We evaluate our metrics on a benchmark dataset produced from three malicious intent datasets and three jailbreak systems. The benchmark dataset is labeled by three annotators. We compare our multifaceted approach with three existing jailbreak evaluation methods. Experiments demonstrate that our multifaceted evaluation outperforms existing methods, with F1 scores improving on average by 17% compared to existing baselines. Our findings motivate the need to move away from the binary view of the jailbreak problem and incorporate a more comprehensive evaluation to ensure the safety of the language model.
Related papers
- JBShield: Defending Large Language Models from Jailbreak Attacks through Activated Concept Analysis and Manipulation [22.75124155879712]
Large language models (LLMs) remain vulnerable to jailbreak attacks.
We propose a comprehensive jailbreak defense framework, JBShield, consisting of two key components: jailbreak detection JBShield-D and mitigation JBShield-M.
arXiv Detail & Related papers (2025-02-11T13:50:50Z) - xJailbreak: Representation Space Guided Reinforcement Learning for Interpretable LLM Jailbreaking [32.89084809038529]
Black-box jailbreak is an attack where crafted prompts bypass safety mechanisms in large language models.
We propose a novel black-box jailbreak method leveraging reinforcement learning (RL)
We introduce a comprehensive jailbreak evaluation framework incorporating keywords, intent matching, and answer validation to provide a more rigorous and holistic assessment of jailbreak success.
arXiv Detail & Related papers (2025-01-28T06:07:58Z) - Layer-Level Self-Exposure and Patch: Affirmative Token Mitigation for Jailbreak Attack Defense [55.77152277982117]
We introduce Layer-AdvPatcher, a methodology designed to defend against jailbreak attacks.
We use an unlearning strategy to patch specific layers within large language models through self-augmented datasets.
Our framework reduces the harmfulness and attack success rate of jailbreak attacks.
arXiv Detail & Related papers (2025-01-05T19:06:03Z) - EnJa: Ensemble Jailbreak on Large Language Models [69.13666224876408]
Large Language Models (LLMs) are increasingly being deployed in safety-critical applications.
LLMs can still be jailbroken by carefully crafted malicious prompts, producing content that violates policy regulations.
We propose a novel EnJa attack to hide harmful instructions using prompt-level jailbreak, boost the attack success rate using a gradient-based attack, and connect the two types of jailbreak attacks via a template-based connector.
arXiv Detail & Related papers (2024-08-07T07:46:08Z) - JailbreakEval: An Integrated Toolkit for Evaluating Jailbreak Attempts Against Large Language Models [21.854909839996612]
Jailbreak attacks induce Large Language Models (LLMs) to generate harmful responses.
There is no consensus on evaluating jailbreaks.
JailbreakEval is a toolkit for evaluating jailbreak attempts.
arXiv Detail & Related papers (2024-06-13T16:59:43Z) - AutoJailbreak: Exploring Jailbreak Attacks and Defenses through a Dependency Lens [83.08119913279488]
We present a systematic analysis of the dependency relationships in jailbreak attack and defense techniques.
We propose three comprehensive, automated, and logical frameworks.
We show that the proposed ensemble jailbreak attack and defense framework significantly outperforms existing research.
arXiv Detail & Related papers (2024-06-06T07:24:41Z) - JailbreakBench: An Open Robustness Benchmark for Jailbreaking Large Language Models [123.66104233291065]
Jailbreak attacks cause large language models (LLMs) to generate harmful, unethical, or otherwise objectionable content.
evaluating these attacks presents a number of challenges, which the current collection of benchmarks and evaluation techniques do not adequately address.
JailbreakBench is an open-sourced benchmark with the following components.
arXiv Detail & Related papers (2024-03-28T02:44:02Z) - EasyJailbreak: A Unified Framework for Jailbreaking Large Language Models [53.87416566981008]
This paper introduces EasyJailbreak, a unified framework simplifying the construction and evaluation of jailbreak attacks against Large Language Models (LLMs)
It builds jailbreak attacks using four components: Selector, Mutator, Constraint, and Evaluator.
Our validation across 10 distinct LLMs reveals a significant vulnerability, with an average breach probability of 60% under various jailbreaking attacks.
arXiv Detail & Related papers (2024-03-18T18:39:53Z) - A StrongREJECT for Empty Jailbreaks [72.8807309802266]
StrongREJECT is a high-quality benchmark for evaluating jailbreak performance.
It scores the harmfulness of a victim model's responses to forbidden prompts.
It achieves state-of-the-art agreement with human judgments of jailbreak effectiveness.
arXiv Detail & Related papers (2024-02-15T18:58:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.