Leveraging Latents for Efficient Thermography Classification and Segmentation
- URL: http://arxiv.org/abs/2404.06589v2
- Date: Sun, 23 Jun 2024 14:54:11 GMT
- Title: Leveraging Latents for Efficient Thermography Classification and Segmentation
- Authors: Tamir Shor, Chaim Baskin, Alex Bronstein,
- Abstract summary: We present a novel algorithm for both breast cancer classification and segmentation.
Rather than focusing efforts on manual feature and architecture engineering, our algorithm focuses on leveraging an informative, learned feature space.
Our classification produces SOTA results, while we are the first work to produce segmentation regions studied in this paper.
- Score: 2.7719338074999547
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Breast cancer is a prominent health concern worldwide, currently being the secondmost common and second-deadliest type of cancer in women. While current breast cancer diagnosis mainly relies on mammography imaging, in recent years the use of thermography for breast cancer imaging has been garnering growing popularity. Thermographic imaging relies on infrared cameras to capture body-emitted heat distributions. While these heat signatures have proven useful for computer-vision systems for accurate breast cancer segmentation and classification, prior work often relies on handcrafted feature engineering or complex architectures, potentially limiting the comparability and applicability of these methods. In this work, we present a novel algorithm for both breast cancer classification and segmentation. Rather than focusing efforts on manual feature and architecture engineering, our algorithm focuses on leveraging an informative, learned feature space, thus making our solution simpler to use and extend to other frameworks and downstream tasks, as well as more applicable to data-scarce settings. Our classification produces SOTA results, while we are the first work to produce segmentation regions studied in this paper.
Related papers
- Are nuclear masks all you need for improved out-of-domain generalisation? A closer look at cancer classification in histopathology [49.518701946822446]
We propose a simple approach to improve OOD generalisation for cancer detection by focusing on nuclear morphology and organisation.
Our approach integrates original images with nuclear segmentation masks during training, encouraging the model to prioritise nuclei.
We show, using multiple datasets, that our method improves OOD generalisation and also leads to increased robustness to image corruptions and adversarial attacks.
arXiv Detail & Related papers (2024-11-14T11:27:15Z) - Breast Cancer Segmentation using Attention-based Convolutional Network
and Explainable AI [0.0]
Breast cancer (BC) remains a significant health threat, with no long-term cure currently available.
Early detection is crucial, yet mammography interpretation is hindered by high false positives and negatives.
This work presents an attention-based convolutional neural network for segmentation, providing increased speed and precision in BC detection and classification.
arXiv Detail & Related papers (2023-05-22T20:49:20Z) - High-resolution synthesis of high-density breast mammograms: Application
to improved fairness in deep learning based mass detection [48.88813637974911]
Computer-aided detection systems based on deep learning have shown good performance in breast cancer detection.
High-density breasts show poorer detection performance since dense tissues can mask or even simulate masses.
This study aims to improve the mass detection performance in high-density breasts using synthetic high-density full-field digital mammograms.
arXiv Detail & Related papers (2022-09-20T15:57:12Z) - Breast Cancer Classification using Deep Learned Features Boosted with
Handcrafted Features [0.0]
It is of utmost importance for the research community to come up with the framework for early detection, classification and diagnosis.
In this article, a novel framework for classification of breast cancer using mammograms is proposed.
The proposed framework combines robust features extracted from novel Convolutional Neural Network (CNN) features with handcrafted features.
arXiv Detail & Related papers (2022-06-26T07:54:09Z) - Mammograms Classification: A Review [0.0]
Mammogram images have been utilized in developing computer-aided diagnosis systems.
Researchers have proved that artificial intelligence with its emerging technologies can be used in the early detection of the disease.
arXiv Detail & Related papers (2022-03-04T19:22:35Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Deep Integrated Pipeline of Segmentation Leading to Classification for
Automated Detection of Breast Cancer from Breast Ultrasound Images [0.0]
The proposed framework integrates ultrasonography image preprocessing with Simple Linear Iterative Clustering (SLIC) to tackle the complex artifact of Breast Ultrasonography Images.
The proposed automated pipeline can be effectively implemented to assist medical practitioners in making more accurate and timely diagnoses of breast cancer.
arXiv Detail & Related papers (2021-10-26T20:42:39Z) - Global Guidance Network for Breast Lesion Segmentation in Ultrasound
Images [84.03487786163781]
We develop a deep convolutional neural network equipped with a global guidance block (GGB) and breast lesion boundary detection modules.
Our network outperforms other medical image segmentation methods and the recent semantic segmentation methods on breast ultrasound lesion segmentation.
arXiv Detail & Related papers (2021-04-05T13:15:22Z) - DenseNet for Breast Tumor Classification in Mammographic Images [0.0]
The aim of this study is to build a deep convolutional neural network method for automatic detection, segmentation, and classification of breast lesions in mammography images.
Based on deep learning the Mask-CNN (RoIAlign) method was developed to features selection and extraction; and the classification was carried out by DenseNet architecture.
arXiv Detail & Related papers (2021-01-24T03:30:59Z) - Gleason Grading of Histology Prostate Images through Semantic
Segmentation via Residual U-Net [60.145440290349796]
The final diagnosis of prostate cancer is based on the visual detection of Gleason patterns in prostate biopsy by pathologists.
Computer-aided-diagnosis systems allow to delineate and classify the cancerous patterns in the tissue.
The methodological core of this work is a U-Net convolutional neural network for image segmentation modified with residual blocks able to segment cancerous tissue.
arXiv Detail & Related papers (2020-05-22T19:49:10Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.