論文の概要: MathVC: An LLM-Simulated Multi-Character Virtual Classroom for Mathematics Education
- arxiv url: http://arxiv.org/abs/2404.06711v1
- Date: Wed, 10 Apr 2024 03:35:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-11 15:39:25.679695
- Title: MathVC: An LLM-Simulated Multi-Character Virtual Classroom for Mathematics Education
- Title(参考訳): MathVC: LLMシミュレーションによる数学教育用マルチキャラクタバーチャル教室
- Authors: Murong Yue, Wijdane Mifdal, Yixuan Zhang, Jennifer Suh, Ziyu Yao,
- Abstract要約: 大規模言語モデル(LLM)は、最近、数学的な問題をモデル化し、文字をシミュレートする双方で強力な能力を示した。
複数のLDMを模擬した学生用仮想教室であるMATHVCについて紹介する。
シミュレーションにMMドメイン知識を統合すること、文字シミュレーションの基盤としてシンボルスキーマを定義すること、対話手順を推進するためにプラットフォームレベルでメタプランナを設計すること、の3つの革新を提案する。
- 参考スコア(独自算出の注目度): 19.549398447035376
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mathematical modeling (MM) is considered a fundamental skill for students in STEM disciplines. Practicing the MM skill is often the most effective when students can engage in group discussion and collaborative problem-solving. However, due to unevenly distributed teachers and educational resources needed to monitor such group activities, students do not always receive equal opportunities for this practice. Excitingly, large language models (LLMs) have recently demonstrated strong capability in both modeling mathematical problems and simulating characters with different traits and properties. Drawing inspiration from the advancement of LLMs, in this work, we present MATHVC, the very first LLM-powered virtual classroom containing multiple LLM-simulated student characters, with whom a human student can practice their MM skill. To encourage each LLM character's behaviors to be aligned with their specified math-relevant properties (termed "characteristics alignment") and the overall conversational procedure to be close to an authentic student MM discussion (termed "conversational procedural alignment"), we proposed three innovations: integrating MM domain knowledge into the simulation, defining a symbolic schema as the ground for character simulation, and designing a meta planner at the platform level to drive the conversational procedure. Through experiments and ablation studies, we confirmed the effectiveness of our simulation approach and showed the promise for MATHVC to benefit real-life students in the future.
- Abstract(参考訳): 数学モデリング(MM)は、STEM分野の学生にとって基本的なスキルであると考えられている。
MMスキルの実践は、学生がグループディスカッションや協調的な問題解決に参加できる場合に最も効果的であることが多い。
しかし、このような集団活動を監視するために、不均一に分散した教師や教育資源が必要とされるため、学生は必ずしも平等な機会を得られるとは限らない。
興味深いことに、大規模言語モデル(LLM)は、最近、数学的な問題をモデル化し、異なる特性と性質を持つ文字をシミュレートするともに、強力な能力を示した。
本研究は,LLMの進歩からインスピレーションを得て,人間学生がMMスキルを実践できる複数のLLMシミュレーション学生キャラクタを含む,最初のLLM仮想教室であるMATHVCを提示する。
各LLMキャラクタの動作を,特定の数学関連特性(特性アライメント)と,真正な学生MMディスカッション(会話プロシージャアライメント)に近接する全体的な会話手順に合わせるように促すため,シミュレーションにMMドメイン知識を統合すること,文字シミュレーションの基盤として記号スキーマを定義すること,プラットフォームレベルでメタプランナを設計し,会話手順を駆動すること,という3つのイノベーションを提案した。
実験とアブレーション研究を通じてシミュレーション手法の有効性を確認し,MATHVCが将来,実生活の学生に利益をもたらす可能性を示した。
関連論文リスト
- Can MLLMs Guide Weakly-Supervised Temporal Action Localization Tasks? [6.7065734065794835]
MLLM4WTALと呼ばれる新しい学習パラダイムを導入する。
MLLMのポテンシャルを利用して、時間的アクションキーセマンティクスと完全なセマンティクスの事前を提供する。
キーセマンティックマッチング(KSM)と完全セマンティック再構成(CSR)の2つの異なるモジュールを統合することでこれを実現できる。
論文 参考訳(メタデータ) (2024-11-13T09:37:24Z) - Students Rather Than Experts: A New AI For Education Pipeline To Model More Human-Like And Personalised Early Adolescences [11.576679362717478]
本研究は,仮想学生エージェントをモデル化するための文脈としての言語学習に焦点を当てた。
教師と生徒の個人的交流のデータセットを様々な性格特性でキュレートすることにより,多次元的評価実験を行う。
論文 参考訳(メタデータ) (2024-10-21T07:18:24Z) - Simulating Classroom Education with LLM-Empowered Agents [52.62324491261461]
SimClassは、ユーザ参加を含むマルチエージェントの教室シミュレーションフレームワークである。
代表的クラスの役割を認識し、自動授業のための新しいクラス制御機構を導入する。
我々は,LLMが従来の教室のインタラクションパターンを効果的にシミュレートし,ユーザエクスペリエンスを向上させることを実証した。
論文 参考訳(メタデータ) (2024-06-27T14:51:07Z) - MathChat: Benchmarking Mathematical Reasoning and Instruction Following in Multi-Turn Interactions [58.57255822646756]
本稿では,大規模言語モデル (LLM) を評価するためのベンチマークであるMathChatを紹介する。
我々は,MathChatベンチマーク上での様々なSOTA LLMの性能評価を行い,これらのモデルが単ターン質問応答において優れているが,より複雑なシナリオでは性能が著しく劣っていることを観察した。
我々は,LLMファインタニングのための合成対話に基づく数学データセットであるMathChat syncを開発した。
論文 参考訳(メタデータ) (2024-05-29T18:45:55Z) - ST-LLM: Large Language Models Are Effective Temporal Learners [58.79456373423189]
大規模言語モデル(LLM)は、テキストの理解と生成において印象的な能力を示した。
ビデオベースの対話システムでビデオを効果的にエンコードし、理解する方法は、まだ解決されていない。
LLM内部の時空間シーケンスをモデル化したビデオLLMベースラインST-LLMを提案する。
論文 参考訳(メタデータ) (2024-03-30T10:11:26Z) - Mastering Robot Manipulation with Multimodal Prompts through Pretraining and Multi-task Fine-tuning [49.92517970237088]
我々はマルチモーダルなプロンプトを理解するためにロボットを訓練する問題に取り組む。
このようなタスクは、視覚と言語信号の相互接続と相補性を理解するロボットの能力にとって大きな課題となる。
マルチモーダルプロンプトを用いてロボット操作を行うためのポリシーを学習する効果的なフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-14T22:24:58Z) - Evaluating Language Models for Mathematics through Interactions [116.67206980096513]
大型言語モデル(LLM)と対話し,評価するためのプロトタイププラットフォームであるCheckMateを紹介した。
我々はCheckMateと共同で3つの言語モデル(InstructGPT, ChatGPT, GPT-4)を、学部レベルの数学の証明支援として評価する研究を行った。
我々は、人間の行動の分類を導き、概して肯定的な相関にもかかわらず、正しさと知覚的有用性の間に顕著な相違点があることを明らかにする。
論文 参考訳(メタデータ) (2023-06-02T17:12:25Z) - ToMChallenges: A Principle-Guided Dataset and Diverse Evaluation Tasks for Exploring Theory of Mind [3.9599054392856483]
ToMChallengesは,Sally-Anne と Smarties のテストに基づいて,多種多様なタスクを用いて,心の理論を総合的に評価するためのデータセットである。
評価結果と誤差分析により,LLMはプロンプトやタスク間で不整合な挙動を示す。
論文 参考訳(メタデータ) (2023-05-24T11:54:07Z) - MAML is a Noisy Contrastive Learner [72.04430033118426]
モデルに依存しないメタラーニング(MAML)は、今日では最も人気があり広く採用されているメタラーニングアルゴリズムの1つである。
我々は、MAMLの動作メカニズムに対する新たな視点を提供し、以下に示すように、MAMLは、教師付きコントラスト目的関数を用いたメタラーナーに類似している。
このような干渉を軽減するため, 単純だが効果的な手法であるゼロ化手法を提案する。
論文 参考訳(メタデータ) (2021-06-29T12:52:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。