Incremental XAI: Memorable Understanding of AI with Incremental Explanations
- URL: http://arxiv.org/abs/2404.06733v1
- Date: Wed, 10 Apr 2024 04:38:17 GMT
- Title: Incremental XAI: Memorable Understanding of AI with Incremental Explanations
- Authors: Jessica Y. Bo, Pan Hao, Brian Y. Lim,
- Abstract summary: We propose to provide more detailed explanations by leveraging the human cognitive capacity to accumulate knowledge by incrementally receiving more details.
We introduce Incremental XAI to automatically partition explanations for general and atypical instances.
Memorability is improved by reusing base factors and reducing the number of factors shown in atypical cases.
- Score: 13.460427339680168
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many explainable AI (XAI) techniques strive for interpretability by providing concise salient information, such as sparse linear factors. However, users either only see inaccurate global explanations, or highly-varying local explanations. We propose to provide more detailed explanations by leveraging the human cognitive capacity to accumulate knowledge by incrementally receiving more details. Focusing on linear factor explanations (factors $\times$ values = outcome), we introduce Incremental XAI to automatically partition explanations for general and atypical instances by providing Base + Incremental factors to help users read and remember more faithful explanations. Memorability is improved by reusing base factors and reducing the number of factors shown in atypical cases. In modeling, formative, and summative user studies, we evaluated the faithfulness, memorability and understandability of Incremental XAI against baseline explanation methods. This work contributes towards more usable explanation that users can better ingrain to facilitate intuitive engagement with AI.
Related papers
- XForecast: Evaluating Natural Language Explanations for Time Series Forecasting [72.57427992446698]
Time series forecasting aids decision-making, especially for stakeholders who rely on accurate predictions.
Traditional explainable AI (XAI) methods, which underline feature or temporal importance, often require expert knowledge.
evaluating forecast NLEs is difficult due to the complex causal relationships in time series data.
arXiv Detail & Related papers (2024-10-18T05:16:39Z) - Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
We evaluate whether explanations can improve human decision-making in practical scenarios of machine learning model development.
To our surprise, we did not find evidence of significant improvement on tasks when users were provided with any of the saliency maps.
These findings suggest caution regarding the usefulness and potential for misunderstanding in saliency-based explanations.
arXiv Detail & Related papers (2023-12-10T23:13:23Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
Second-order explainable AI (SOXAI) was recently proposed to extend explainable AI (XAI) from the instance level to the dataset level.
We demonstrate for the first time, via example classification and segmentation cases, that eliminating irrelevant concepts from the training set based on actionable insights from SOXAI can enhance a model's performance.
arXiv Detail & Related papers (2023-06-14T23:24:01Z) - Reason to explain: Interactive contrastive explanations (REASONX) [5.156484100374058]
We present REASONX, an explanation tool based on Constraint Logic Programming (CLP)
REASONX provides interactive contrastive explanations that can be augmented by background knowledge.
It computes factual and constrative decision rules, as well as closest constrative examples.
arXiv Detail & Related papers (2023-05-29T15:13:46Z) - LMExplainer: Grounding Knowledge and Explaining Language Models [37.578973458651944]
Language models (LMs) like GPT-4 are important in AI applications, but their opaque decision-making process reduces user trust, especially in safety-critical areas.
We introduce LMExplainer, a novel knowledge-grounded explainer that clarifies the reasoning process of LMs through intuitive, human-understandable explanations.
arXiv Detail & Related papers (2023-03-29T08:59:44Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
The emphasis of XAI research appears to have turned to a more pragmatic explanation approach for better understanding.
An extensive area where cognitive science research may substantially influence XAI advancements is evaluating user knowledge and feedback.
We propose a framework to experiment with generating and evaluating the explanations on the grounds of different cognitive levels of understanding.
arXiv Detail & Related papers (2022-10-31T19:20:22Z) - The privacy issue of counterfactual explanations: explanation linkage
attacks [0.0]
We introduce the explanation linkage attack, which can occur when deploying instance-based strategies to find counterfactual explanations.
To counter such an attack, we propose k-anonymous counterfactual explanations and introduce pureness as a new metric to evaluate the validity of these k-anonymous counterfactual explanations.
Our results show that making the explanations, rather than the whole dataset, k- anonymous, is beneficial for the quality of the explanations.
arXiv Detail & Related papers (2022-10-21T15:44:19Z) - Explainability in Deep Reinforcement Learning [68.8204255655161]
We review recent works in the direction to attain Explainable Reinforcement Learning (XRL)
In critical situations where it is essential to justify and explain the agent's behaviour, better explainability and interpretability of RL models could help gain scientific insight on the inner workings of what is still considered a black box.
arXiv Detail & Related papers (2020-08-15T10:11:42Z) - Explanations of Black-Box Model Predictions by Contextual Importance and
Utility [1.7188280334580195]
We present the Contextual Importance (CI) and Contextual Utility (CU) concepts to extract explanations easily understandable by experts as well as novice users.
This method explains the prediction results without transforming the model into an interpretable one.
We show the utility of explanations in car selection example and Iris flower classification by presenting complete (i.e. the causes of an individual prediction) and contrastive explanation.
arXiv Detail & Related papers (2020-05-30T06:49:50Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.