論文の概要: An Animation-based Augmentation Approach for Action Recognition from Discontinuous Video
- arxiv url: http://arxiv.org/abs/2404.06741v1
- Date: Wed, 10 Apr 2024 04:59:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-11 15:29:37.746408
- Title: An Animation-based Augmentation Approach for Action Recognition from Discontinuous Video
- Title(参考訳): アニメーションに基づく不連続映像からの行動認識のための拡張手法
- Authors: Xingyu Song, Zhan Li, Shi Chen, Xin-Qiang Cai, Kazuyuki Demachi,
- Abstract要約: 本稿では,データ拡張のための革新的なパイプラインである4A(Action Animation-based Augmentation Approach)を紹介する。
本研究では,不連続映像による行動認識タスク訓練の性能低下の問題について検討する。
トレーニング用の元のデータのうち10%だけが実際のデータセットから得られた元のデータと同じパフォーマンスを実現しています。
- 参考スコア(独自算出の注目度): 11.293897932762809
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The study of action recognition has attracted considerable attention recently due to its broad applications in multiple areas. However, with the issue of discontinuous training video, which not only decreases the performance of action recognition model, but complicates the data augmentation process as well, still remains under-exploration. In this study, we introduce the 4A (Action Animation-based Augmentation Approach), an innovative pipeline for data augmentation to address the problem. The main contributions remain in our work includes: (1) we investigate the problem of severe decrease on performance of action recognition task training by discontinuous video, and the limitation of existing augmentation methods on solving this problem. (2) we propose a novel augmentation pipeline, 4A, to address the problem of discontinuous video for training, while achieving a smoother and natural-looking action representation than the latest data augmentation methodology. (3) We achieve the same performance with only 10% of the original data for training as with all of the original data from the real-world dataset, and a better performance on In-the-wild videos, by employing our data augmentation techniques.
- Abstract(参考訳): 行動認識の研究は、複数の分野で広く応用されているため、近年、かなりの注目を集めている。
しかし、動作認識モデルの性能を低下させるだけでなく、データ拡張プロセスも複雑化する不連続なトレーニングビデオの問題により、まだ探索中である。
本研究では,データ拡張のための革新的なパイプラインである4A(Action Animation-based Augmentation Approach)を紹介する。
本研究の主な貢献は,(1)不連続映像による行動認識タスク訓練の性能低下の問題と,その解決における既存の拡張手法の限界について検討することである。
2) トレーニング用不連続ビデオの課題に対処する新たな拡張パイプラインである4Aを提案し, 最新のデータ拡張手法よりもスムーズで自然な動作表現を実現した。
(3) 実世界のデータセットから得られたデータとトレーニング用データのうち、10%のトレーニング用データで同じパフォーマンスを実現し、データ拡張技術を用いることで、インザワイルドビデオにおけるより良いパフォーマンスを実現した。
関連論文リスト
- Diff-IP2D: Diffusion-Based Hand-Object Interaction Prediction on Egocentric Videos [22.81433371521832]
そこで我々は,Diff-IP2Dを提案する。
提案手法は,市販のメトリクスと新たに提案した評価プロトコルの両方において,最先端のベースラインを大幅に上回っている。
論文 参考訳(メタデータ) (2024-05-07T14:51:05Z) - Video Action Recognition Collaborative Learning with Dynamics via
PSO-ConvNet Transformer [1.876462046907555]
ビデオにおける学習行動のための新しいPSO-ConvNetモデルを提案する。
UCF-101データセットに対する実験結果から,最大9%の精度向上が得られた。
全体として、我々の動的PSO-ConvNetモデルは、人間の行動認識を改善するための有望な方向を提供する。
論文 参考訳(メタデータ) (2023-02-17T23:39:34Z) - Dyna-DepthFormer: Multi-frame Transformer for Self-Supervised Depth
Estimation in Dynamic Scenes [19.810725397641406]
シーン深度と3次元運動場を協調的に予測する新しいDyna-Depthformerフレームワークを提案する。
まず,多視点の相関を一連の自己・横断的層を通じて活用し,深度特徴表現の強化を図る。
第2に,動的物体の運動場をセマンティック・プレセプションを使わずに推定するワーピングに基づく運動ネットワークを提案する。
論文 参考訳(メタデータ) (2023-01-14T09:43:23Z) - Multi-dataset Training of Transformers for Robust Action Recognition [75.5695991766902]
動作認識のための複数のデータセットをうまく一般化することを目的として,ロバストな特徴表現の課題について検討する。
本稿では、情報損失と投影損失という2つの新しい損失項を設計した、新しいマルチデータセットトレーニングパラダイムであるMultiTrainを提案する。
本研究では,Kineetics-400,Kineetics-700,Moments-in-Time,Activitynet,Some-something-v2の5つの課題データセットに対して,本手法の有効性を検証する。
論文 参考訳(メタデータ) (2022-09-26T01:30:43Z) - Differentiable Frequency-based Disentanglement for Aerial Video Action
Recognition [56.91538445510214]
ビデオにおける人間の行動認識のための学習アルゴリズムを提案する。
我々のアプローチは、主に斜めに配置されたダイナミックカメラから取得されるUAVビデオのために設計されている。
我々はUAV HumanデータセットとNEC Droneデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2022-09-15T22:16:52Z) - Towards Scale Consistent Monocular Visual Odometry by Learning from the
Virtual World [83.36195426897768]
仮想データから絶対スケールを取得するための新しいフレームワークであるVRVOを提案する。
まず、モノクロ実画像とステレオ仮想データの両方を用いて、スケール対応の異種ネットワークをトレーニングする。
結果として生じるスケール一貫性の相違は、直接VOシステムと統合される。
論文 参考訳(メタデータ) (2022-03-11T01:51:54Z) - EAN: Event Adaptive Network for Enhanced Action Recognition [66.81780707955852]
本稿では,映像コンテンツの動的性質を調査するための統合された行動認識フレームワークを提案する。
まず、局所的な手がかりを抽出する際に、動的スケールの時空間カーネルを生成し、多様な事象を適応的に適合させる。
第2に、これらのキューを正確にグローバルなビデオ表現に集約するために、トランスフォーマーによって選択されたいくつかの前景オブジェクト間のインタラクションのみをマイニングすることを提案する。
論文 参考訳(メタデータ) (2021-07-22T15:57:18Z) - STAR: Sparse Transformer-based Action Recognition [61.490243467748314]
本研究は,空間的次元と時間的次元に細かな注意を払っている新しいスケルトンに基づく人間行動認識モデルを提案する。
実験により、トレーニング可能なパラメータをはるかに少なくし、トレーニングや推論の高速化を図りながら、モデルが同等のパフォーマンスを達成できることが示されている。
論文 参考訳(メタデータ) (2021-07-15T02:53:11Z) - Domain Adaptive Robotic Gesture Recognition with Unsupervised
Kinematic-Visual Data Alignment [60.31418655784291]
本稿では,マルチモダリティ知識,すなわちキネマティックデータとビジュアルデータを同時にシミュレータから実ロボットに伝達できる,教師なしドメイン適応フレームワークを提案する。
ビデオの時間的手がかりと、ジェスチャー認識に対するマルチモーダル固有の相関を用いて、トランスファー可能な機能を強化したドメインギャップを修復する。
その結果, 本手法は, ACCでは最大12.91%, F1scoreでは20.16%と, 実際のロボットではアノテーションを使わずに性能を回復する。
論文 参考訳(メタデータ) (2021-03-06T09:10:03Z) - Complex Human Action Recognition in Live Videos Using Hybrid FR-DL
Method [1.027974860479791]
入力シーケンス中の代表フレームの自動選択により,前処理フェーズの課題に対処する。
本稿では,バックグラウンドサブトラクションとHOGを用いたハイブリッド手法を提案し,続いて深層ニューラルネットワークと骨格モデリング手法を適用した。
本稿では,このモデルをFR-DL(Feature Reduction & Deep Learning based action recognition method)と呼ぶ。
論文 参考訳(メタデータ) (2020-07-06T15:12:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。