Solving the Food-Energy-Water Nexus Problem via Intelligent Optimization Algorithms
- URL: http://arxiv.org/abs/2404.06769v1
- Date: Wed, 10 Apr 2024 06:19:19 GMT
- Title: Solving the Food-Energy-Water Nexus Problem via Intelligent Optimization Algorithms
- Authors: Qi Deng, Zheng Fan, Zhi Li, Xinna Pan, Qi Kang, MengChu Zhou,
- Abstract summary: Food-Energy-Water systems are intricately linked among food, energy and water that impact each other.
They usually involve a huge number of decision variables and many conflicting objectives to be optimized.
In this paper, we solve a Food-Energy-Water optimization problem by using the state-of-art intelligent optimization methods and compare their performance.
- Score: 46.48853432592689
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The application of evolutionary algorithms (EAs) to multi-objective optimization problems has been widespread. However, the EA research community has not paid much attention to large-scale multi-objective optimization problems arising from real-world applications. Especially, Food-Energy-Water systems are intricately linked among food, energy and water that impact each other. They usually involve a huge number of decision variables and many conflicting objectives to be optimized. Solving their related optimization problems is essentially important to sustain the high-quality life of human beings. Their solution space size expands exponentially with the number of decision variables. Searching in such a vast space is challenging because of such large numbers of decision variables and objective functions. In recent years, a number of large-scale many-objectives optimization evolutionary algorithms have been proposed. In this paper, we solve a Food-Energy-Water optimization problem by using the state-of-art intelligent optimization methods and compare their performance. Our results conclude that the algorithm based on an inverse model outperforms the others. This work should be highly useful for practitioners to select the most suitable method for their particular large-scale engineering optimization problems.
Related papers
- Learning Multiple Initial Solutions to Optimization Problems [52.9380464408756]
Sequentially solving similar optimization problems under strict runtime constraints is essential for many applications.
We propose learning to predict emphmultiple diverse initial solutions given parameters that define the problem instance.
We find significant and consistent improvement with our method across all evaluation settings and demonstrate that it efficiently scales with the number of initial solutions required.
arXiv Detail & Related papers (2024-11-04T15:17:19Z) - Iterative or Innovative? A Problem-Oriented Perspective for Code Optimization [81.88668100203913]
Large language models (LLMs) have demonstrated strong capabilities in solving a wide range of programming tasks.
In this paper, we explore code optimization with a focus on performance enhancement, specifically aiming to optimize code for minimal execution time.
arXiv Detail & Related papers (2024-06-17T16:10:10Z) - Achieving Diversity in Objective Space for Sample-efficient Search of
Multiobjective Optimization Problems [4.732915763557618]
We introduce the Likelihood of Metric Satisfaction (LMS) acquisition function, analyze its behavior and properties, and demonstrate its viability on various problems.
This method presents decision makers with a robust pool of promising design decisions and helps them better understand the space of good solutions.
arXiv Detail & Related papers (2023-06-23T20:42:22Z) - A Study of Scalarisation Techniques for Multi-Objective QUBO Solving [0.0]
Quantum and quantum-inspired optimisation algorithms have shown promising performance when applied to academic benchmarks as well as real-world problems.
However, QUBO solvers are single objective solvers. To make them more efficient at solving problems with multiple objectives, a decision on how to convert such multi-objective problems to single-objective problems need to be made.
arXiv Detail & Related papers (2022-10-20T14:54:37Z) - An Effective and Efficient Evolutionary Algorithm for Many-Objective
Optimization [2.5594423685710814]
We develop an effective evolutionary algorithm (E3A) that can handle various many-objective problems.
In E3A, inspired by SDE, a novel population maintenance method is proposed.
We conduct extensive experiments and show that E3A performs better than 11 state-of-the-art many-objective evolutionary algorithms.
arXiv Detail & Related papers (2022-05-31T15:35:46Z) - Multi-Objective Constrained Optimization for Energy Applications via
Tree Ensembles [55.23285485923913]
Energy systems optimization problems are complex due to strongly non-linear system behavior and multiple competing objectives.
In some cases, proposed optimal solutions need to obey explicit input constraints related to physical properties or safety-critical operating conditions.
This paper proposes a novel data-driven strategy using tree ensembles for constrained multi-objective optimization of black-box problems.
arXiv Detail & Related papers (2021-11-04T20:18:55Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z) - Bio-inspired Optimization: metaheuristic algorithms for optimization [0.0]
In today's day and time solving real-world complex problems has become fundamentally vital and critical task.
Traditional optimization methods are found to be effective for small scale problems.
For real-world large scale problems, traditional methods either do not scale up or fail to obtain optimal solutions or they end-up giving solutions after a long running time.
arXiv Detail & Related papers (2020-02-24T13:26:34Z) - sKPNSGA-II: Knee point based MOEA with self-adaptive angle for Mission
Planning Problems [2.191505742658975]
Some problems have many objectives which lead to a large number of non-dominated solutions.
This paper presents a new algorithm that has been designed to obtain the most significant solutions.
This new algorithm has been applied to the real world application in Unmanned Air Vehicle (UAV) Mission Planning Problem.
arXiv Detail & Related papers (2020-02-20T17:07:08Z) - Optimizing Wireless Systems Using Unsupervised and
Reinforced-Unsupervised Deep Learning [96.01176486957226]
Resource allocation and transceivers in wireless networks are usually designed by solving optimization problems.
In this article, we introduce unsupervised and reinforced-unsupervised learning frameworks for solving both variable and functional optimization problems.
arXiv Detail & Related papers (2020-01-03T11:01:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.