Edge Detection Quantumized: A Novel Quantum Algorithm For Image Processing
- URL: http://arxiv.org/abs/2404.06889v1
- Date: Wed, 10 Apr 2024 10:29:08 GMT
- Title: Edge Detection Quantumized: A Novel Quantum Algorithm For Image Processing
- Authors: Syed Emad Uddin Shubha, Mir Muzahedul Islam, Tanvir Ahahmed Sadi, Md. Hasibul Hasan Miraz, M. R. C. Mahdy,
- Abstract summary: This paper presents a novel protocol by combining the Flexible Representation of Quantum Images (FRQI) encoding and a modified QHED algorithm.
An improved edge outline method has been proposed in this work resulting in a better object outline output and more accurate edge detection than the traditional QHED algorithm.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum image processing is a research field that explores the use of quantum computing and algorithms for image processing tasks such as image encoding and edge detection. Although classical edge detection algorithms perform reasonably well and are quite efficient, they become outright slower when it comes to large datasets with high-resolution images. Quantum computing promises to deliver a significant performance boost and breakthroughs in various sectors. Quantum Hadamard Edge Detection (QHED) algorithm, for example, works at constant time complexity, and thus detects edges much faster than any classical algorithm. However, the original QHED algorithm is designed for Quantum Probability Image Encoding (QPIE) and mainly works for binary images. This paper presents a novel protocol by combining the Flexible Representation of Quantum Images (FRQI) encoding and a modified QHED algorithm. An improved edge outline method has been proposed in this work resulting in a better object outline output and more accurate edge detection than the traditional QHED algorithm.
Related papers
- Qubit-efficient Variational Quantum Algorithms for Image Segmentation [4.737806718785056]
Quantum computing is expected to transform a range of computational tasks beyond the reach of classical algorithms.
In this work, we examine the application of variational quantum algorithms (VQAs) for unsupervised image segmentation.
arXiv Detail & Related papers (2024-05-23T10:21:57Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Variational Quantum Algorithms for the Allocation of Resources in a Cloud/Edge Architecture [1.072460284847973]
We show that Variational Quantum Algorithms can be a viable alternative to classical algorithms in the near future.
In particular, we compare the performances, in terms of success probability, of two algorithms, i.e., Quantum Approximate Optimization Algorithm (QAOA) and Variational Quantum Eigensolver (VQE)
The simulation experiments, performed for a set of simple problems, %CM230124 that involve a Cloud and two Edge nodes, show that the VQE algorithm ensures better performances when it is equipped with appropriate circuit textitansatzes that are able to restrict the search space
arXiv Detail & Related papers (2024-01-25T17:37:40Z) - A quantum segmentation algorithm based on local adaptive threshold for
NEQR image [7.798738743268923]
The complexity of our algorithm can be reduced to $O(n2+q)$, which is an exponential speedup compared to the classic counterparts.
The experiment is conducted on IBM Q to show the feasibility of our algorithm in the noisy intermediate-scale quantum (NISQ) era.
arXiv Detail & Related papers (2023-10-02T04:01:42Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - An efficient quantum-classical hybrid algorithm for distorted
alphanumeric character identification [0.0]
The proposed algorithm can transform a low-resolution bitonal image of a character from the set of alphanumeric characters into a high-resolution image.
The quantum part of the proposed algorithm fruitfully utilizes a variant of Grover's search algorithm, known as the fixed point search algorithm.
arXiv Detail & Related papers (2022-12-25T05:31:51Z) - A hybrid quantum image edge detector for the NISQ era [62.997667081978825]
We propose a hybrid method for quantum edge detection based on the idea of a quantum artificial neuron.
Our method can be practically implemented on quantum computers, especially on those of the current noisy intermediate-scale quantum era.
arXiv Detail & Related papers (2022-03-22T22:02:09Z) - Benchmarking Small-Scale Quantum Devices on Computing Graph Edit
Distance [52.77024349608834]
Graph Edit Distance (GED) measures the degree of (dis)similarity between two graphs in terms of the operations needed to make them identical.
In this paper we present a comparative study of two quantum approaches to computing GED.
arXiv Detail & Related papers (2021-11-19T12:35:26Z) - ORQVIZ: Visualizing High-Dimensional Landscapes in Variational Quantum
Algorithms [51.02972483763309]
Variational Quantum Algorithms (VQAs) are promising candidates for finding practical applications of quantum computers.
This work is accompanied by the release of the open-source Python package $textitorqviz$, which provides code to compute and flexibly plot 1D and 2D scans.
arXiv Detail & Related papers (2021-11-08T18:17:59Z) - Quantum Face Recognition Protocol with Ghost Imaging [1.4856165761750735]
We propose a quantum machine learning algorithm for pattern recognition based on quantum principal component analysis (QPCA)
A novel quantum algorithm for finding dissimilarity in the faces based on the determinant of trace and computation of a matrix (image) is also proposed.
Our fully quantum pattern recognition system with quantum algorithm and quantum inputs promises a much-improved image acquisition and identification system.
arXiv Detail & Related papers (2021-10-19T16:31:46Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.