An efficient quantum-classical hybrid algorithm for distorted
alphanumeric character identification
- URL: http://arxiv.org/abs/2212.12861v1
- Date: Sun, 25 Dec 2022 05:31:51 GMT
- Title: An efficient quantum-classical hybrid algorithm for distorted
alphanumeric character identification
- Authors: Ankur Pal, Abhishek Shukla and Anirban Pathak
- Abstract summary: The proposed algorithm can transform a low-resolution bitonal image of a character from the set of alphanumeric characters into a high-resolution image.
The quantum part of the proposed algorithm fruitfully utilizes a variant of Grover's search algorithm, known as the fixed point search algorithm.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An algorithm for image processing is proposed. The proposed algorithm, which
can be viewed as a quantum-classical hybrid algorithm, can transform a
low-resolution bitonal image of a character from the set of alphanumeric
characters (A-Z, 0-9) into a high-resolution image. The quantum part of the
proposed algorithm fruitfully utilizes a variant of Grover's search algorithm,
known as the fixed point search algorithm. Further, the quantum part of the
algorithm is simulated using CQASM and the advantage of the algorithm is
established through the complexity analysis. Additional analysis has also
revealed that this scheme for optical character recognition (OCR) leads to high
confidence value and generally works in a more efficient manner compared to the
existing classical, quantum, and hybrid algorithms for a similar task.
Related papers
- Hybrid Quantum-Classical Algorithms [0.0]
This thesis explores hybrid algorithms that combine classical and quantum computing to enhance the performance of classical algorithms.
Two approaches are studied: a hybrid search and sample optimization algorithm and a classical algorithm that assesses the cost and performance of quantum algorithms in chemistry.
arXiv Detail & Related papers (2024-06-18T07:54:05Z) - Edge Detection Quantumized: A Novel Quantum Algorithm For Image Processing [0.0]
This paper presents a novel protocol by combining the Flexible Representation of Quantum Images (FRQI) encoding and a modified QHED algorithm.
An improved edge outline method has been proposed in this work resulting in a better object outline output and more accurate edge detection than the traditional QHED algorithm.
arXiv Detail & Related papers (2024-04-10T10:29:08Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Generalized quantum Arimoto-Blahut algorithm and its application to
quantum information bottleneck [55.22418739014892]
We generalize the quantum Arimoto-Blahut algorithm by Ramakrishnan et al.
We apply our algorithm to the quantum information bottleneck with three quantum systems.
Our numerical analysis shows that our algorithm is better than their algorithm.
arXiv Detail & Related papers (2023-11-19T00:06:11Z) - Iterative Quantum Algorithms for Maximum Independent Set: A Tale of
Low-Depth Quantum Algorithms [0.0]
We study a new class of hybrid approaches to quantum optimization, termed Iterative Maximum Quantum Algorithms.
We show that for QAOA with depth $p=1$, this algorithm performs exactly the same operations and selections as the classical greedy algorithm for MIS.
arXiv Detail & Related papers (2023-09-22T18:00:03Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Quantum Algorithm For Estimating Eigenvalue [0.0]
We provide a quantum algorithm for estimating the largest eigenvalue in magnitude of a given Hermitian matrix.
Our quantum procedure can also yield exponential speedup compared to classical algorithms that solve the same problem.
arXiv Detail & Related papers (2022-11-11T13:02:07Z) - Quantum Face Recognition Protocol with Ghost Imaging [1.4856165761750735]
We propose a quantum machine learning algorithm for pattern recognition based on quantum principal component analysis (QPCA)
A novel quantum algorithm for finding dissimilarity in the faces based on the determinant of trace and computation of a matrix (image) is also proposed.
Our fully quantum pattern recognition system with quantum algorithm and quantum inputs promises a much-improved image acquisition and identification system.
arXiv Detail & Related papers (2021-10-19T16:31:46Z) - A Systematic Characterization of Sampling Algorithms for Open-ended
Language Generation [71.31905141672529]
We study the widely adopted ancestral sampling algorithms for auto-regressive language models.
We identify three key properties that are shared among them: entropy reduction, order preservation, and slope preservation.
We find that the set of sampling algorithms that satisfies these properties performs on par with the existing sampling algorithms.
arXiv Detail & Related papers (2020-09-15T17:28:42Z) - Accelerated Message Passing for Entropy-Regularized MAP Inference [89.15658822319928]
Maximum a posteriori (MAP) inference in discrete-valued random fields is a fundamental problem in machine learning.
Due to the difficulty of this problem, linear programming (LP) relaxations are commonly used to derive specialized message passing algorithms.
We present randomized methods for accelerating these algorithms by leveraging techniques that underlie classical accelerated gradient.
arXiv Detail & Related papers (2020-07-01T18:43:32Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
We propose the setting of extreme algorithm selection (XAS) where we consider fixed sets of thousands of candidate algorithms.
We assess the applicability of state-of-the-art AS techniques to the XAS setting and propose approaches leveraging a dyadic feature representation.
arXiv Detail & Related papers (2020-01-29T09:40:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.