論文の概要: GraSAME: Injecting Token-Level Structural Information to Pretrained Language Models via Graph-guided Self-Attention Mechanism
- arxiv url: http://arxiv.org/abs/2404.06911v1
- Date: Wed, 10 Apr 2024 11:03:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-11 14:50:32.807088
- Title: GraSAME: Injecting Token-Level Structural Information to Pretrained Language Models via Graph-guided Self-Attention Mechanism
- Title(参考訳): GraSAME:グラフ誘導型自己認識機構による事前学習言語モデルへのトークンレベル構造情報注入
- Authors: Shuzhou Yuan, Michael Färber,
- Abstract要約: 本研究では,事前学習型言語モデルのためのグラフ誘導型自己注意機構GraSAMEを提案する。
GraSAMEはトークンレベルの構造情報をPLMにシームレスに組み込む。
グラフからテキストへの生成タスクの実験では,GraSAMEがベースラインモデルより優れ,WebNLGデータセット上での最先端(SOTA)モデルに匹敵する結果が得られることを示した。
- 参考スコア(独自算出の注目度): 10.573861741540853
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pretrained Language Models (PLMs) benefit from external knowledge stored in graph structures for various downstream tasks. However, bridging the modality gap between graph structures and text remains a significant challenge. Traditional methods like linearizing graphs for PLMs lose vital graph connectivity, whereas Graph Neural Networks (GNNs) require cumbersome processes for integration into PLMs. In this work, we propose a novel graph-guided self-attention mechanism, GraSAME. GraSAME seamlessly incorporates token-level structural information into PLMs without necessitating additional alignment or concatenation efforts. As an end-to-end, lightweight multimodal module, GraSAME follows a multi-task learning strategy and effectively bridges the gap between graph and textual modalities, facilitating dynamic interactions between GNNs and PLMs. Our experiments on the graph-to-text generation task demonstrate that GraSAME outperforms baseline models and achieves results comparable to state-of-the-art (SOTA) models on WebNLG datasets. Furthermore, compared to SOTA models, GraSAME eliminates the need for extra pre-training tasks to adjust graph inputs and reduces the number of trainable parameters by over 100 million.
- Abstract(参考訳): 事前訓練された言語モデル(PLM)は、様々な下流タスクのためにグラフ構造に格納された外部知識の恩恵を受ける。
しかし、グラフ構造とテキストの間のモダリティギャップを埋めることは、依然として大きな課題である。
PLMに対するグラフの線形化のような従来の手法では、重要なグラフ接続が失われる一方、グラフニューラルネットワーク(GNN)はPLMとの統合に煩雑なプロセスを必要とする。
本研究では,グラフ誘導型自己注意機構GraSAMEを提案する。
GraSAMEはトークンレベルの構造情報をPLMにシームレスに組み込む。
エンドツーエンドで軽量なマルチモーダルモジュールとして、GraSAMEはマルチタスク学習戦略に従い、グラフとテキストのモダリティのギャップを効果的に橋渡しし、GNNとPLM間の動的相互作用を促進する。
グラフ・テキスト生成タスクの実験では,GraSAMEがベースラインモデルより優れ,WebNLGデータセット上での最先端(SOTA)モデルに匹敵する結果が得られることを示した。
さらに、SOTAモデルと比較して、グラフ入力を調整するための追加の事前トレーニングタスクの必要性を排除し、トレーニング可能なパラメータの数を1億以上削減する。
関連論文リスト
- Democratizing Large Language Model-Based Graph Data Augmentation via Latent Knowledge Graphs [22.218522445858344]
グラフデータの不足やノイズによるグラフ表現学習には,データ拡張が必要である。
我々は、LCMのガイダンスであるDemoGraphを用いて、ブラックボックスのコンテキスト駆動グラフデータ拡張手法を提案する。
本手法は,電子健康記録(EHRs)のシナリオに優れ,文脈知識の最大限活用を実証する。
論文 参考訳(メタデータ) (2025-02-19T09:00:32Z) - Graph Learning in the Era of LLMs: A Survey from the Perspective of Data, Models, and Tasks [25.720233631885726]
グラフニューラルネットワーク(GNN)とLarge Language Models(LLM)の統合は、有望な技術パラダイムとして現れている。
データ品質を根本的に向上させるために、リッチなセマンティックコンテキストを持つグラフ記述テキストを活用します。
この研究は、グラフ学習方法論の進歩を目指す研究者や実践者にとって、基礎的な参考となる。
論文 参考訳(メタデータ) (2024-12-17T01:41:17Z) - Can Graph Neural Networks Learn Language with Extremely Weak Text Supervision? [62.12375949429938]
CLIPパイプラインによる転送可能なグラフニューラルネットワーク(GNN)の構築は、3つの根本的な問題のために難しい。
我々は、マルチモーダル・プロンプト・ラーニングを利用して、事前学習したGNNを下流のタスクやデータに効果的に適応させる。
我々の新しいパラダイムは、グラフプロンプトとテキストプロンプトの両方を同時に学習することで、Large Language Models(LLM)と直接同じ空間にグラフを埋め込む。
論文 参考訳(メタデータ) (2024-12-11T08:03:35Z) - Instance-Aware Graph Prompt Learning [71.26108600288308]
本稿では,インスタンス対応グラフプロンプト学習(IA-GPL)について紹介する。
このプロセスでは、軽量アーキテクチャを使用して各インスタンスの中間プロンプトを生成する。
複数のデータセットと設定で実施された実験は、最先端のベースラインと比較して、IA-GPLの優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-11-26T18:38:38Z) - Joint Embeddings for Graph Instruction Tuning [0.0]
本研究は,Large Language Models (LLMs) におけるグラフモダリティの統合について検討する。
グラフの埋め込みによって基礎となるLLMを強化し、それを理解できるように訓練するディープラーニングモデルを作ることを目標としている。
このアプローチは、グラフからテキストへのアプローチよりもはるかに優れており、大きなグラフであっても一貫性が保たれている。
論文 参考訳(メタデータ) (2024-05-31T08:26:47Z) - Can Graph Learning Improve Planning in LLM-based Agents? [61.47027387839096]
言語エージェントにおけるタスクプランニングは、大規模言語モデル(LLM)の開発とともに重要な研究トピックとして浮上している。
本稿では,課題計画のためのグラフ学習に基づく手法について検討する。
我々のグラフ学習への関心は、注意のバイアスと自己回帰的損失が、グラフ上の意思決定を効果的にナビゲートするLLMの能力を妨げているという理論的な発見に起因している。
論文 参考訳(メタデータ) (2024-05-29T14:26:24Z) - Parameter-Efficient Tuning Large Language Models for Graph Representation Learning [62.26278815157628]
Graph-awareを導入します。
GPEFT - グラフ表現学習のための新しい手法。
グラフニューラルネットワーク(GNN)を用いて、隣接するノードからグラフプロンプトに構造情報をエンコードする。
我々は8つの異なるテキストリッチグラフで実施した総合的な実験を通じて,リンク予測評価において hit@1 と Mean Reciprocal Rank (MRR) の平均 2% の改善を観察し,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2024-04-28T18:36:59Z) - MuseGraph: Graph-oriented Instruction Tuning of Large Language Models
for Generic Graph Mining [41.19687587548107]
グラフニューラルネットワーク(GNN)は、異なるグラフタスクやデータセットに適用されるたびに、再トレーニングされる必要がある。
GNNとLarge Language Models(LLM)の強みをシームレスに統合する新しいフレームワークMusteGraphを提案する。
実験結果から,異なるグラフタスクの大幅な改善が示された。
論文 参考訳(メタデータ) (2024-03-02T09:27:32Z) - GraphGPT: Graph Instruction Tuning for Large Language Models [27.036935149004726]
グラフニューラルネットワーク(GNN)は、グラフ構造を理解するために進化してきた。
堅牢性を高めるために、自己教師付き学習(SSL)はデータ拡張の重要なツールとなっている。
本研究は,ゼロショット学習環境におけるグラフモデルの一般化を推し進めることによって,この問題に対処する。
論文 参考訳(メタデータ) (2023-10-19T06:17:46Z) - SimTeG: A Frustratingly Simple Approach Improves Textual Graph Learning [131.04781590452308]
テキストグラフ学習におけるフラストレーションに富んだアプローチであるSimTeGを提案する。
まず、下流タスクで予め訓練されたLM上で、教師付きパラメータ効率の微調整(PEFT)を行う。
次に、微調整されたLMの最後の隠れ状態を用いてノード埋め込みを生成する。
論文 参考訳(メタデータ) (2023-08-03T07:00:04Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
本稿では,テンソルで表されるグラフの集合に関連するデータから,スケーラブルな半教師付き学習(SSL)を実現するためのテンソルグラフ畳み込みネットワーク(TGCN)を提案する。
提案アーキテクチャは、標準的なGCNと比較して大幅に性能が向上し、最先端の敵攻撃に対処し、タンパク質間相互作用ネットワーク上でのSSL性能が著しく向上する。
論文 参考訳(メタデータ) (2020-03-15T02:33:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。