A Tight $O(4^k/p_c)$ Runtime Bound for a ($μ$+1) GA on Jump$_k$ for Realistic Crossover Probabilities
- URL: http://arxiv.org/abs/2404.07061v1
- Date: Wed, 10 Apr 2024 14:50:43 GMT
- Title: A Tight $O(4^k/p_c)$ Runtime Bound for a ($μ$+1) GA on Jump$_k$ for Realistic Crossover Probabilities
- Authors: Andre Opris, Johannes Lengler, Dirk Sudholt,
- Abstract summary: We show that population diversity converges to an equilibrium of near-perfect diversity.
Our work partially solves a problem that has been open for more than 20 years.
- Score: 1.8434042562191815
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The Jump$_k$ benchmark was the first problem for which crossover was proven to give a speedup over mutation-only evolutionary algorithms. Jansen and Wegener (2002) proved an upper bound of $O({\rm poly}(n) + 4^k/p_c)$ for the ($\mu$+1)~Genetic Algorithm ($(\mu+1)$ GA), but only for unrealistically small crossover probabilities $p_c$. To this date, it remains an open problem to prove similar upper bounds for realistic~$p_c$; the best known runtime bound for $p_c = \Omega(1)$ is $O((n/\chi)^{k-1})$, $\chi$ a positive constant. Using recently developed techniques, we analyse the evolution of the population diversity, measured as sum of pairwise Hamming distances, for a variant of the \muga on Jump$_k$. We show that population diversity converges to an equilibrium of near-perfect diversity. This yields an improved and tight time bound of $O(\mu n \log(k) + 4^k/p_c)$ for a range of~$k$ under the mild assumptions $p_c = O(1/k)$ and $\mu \in \Omega(kn)$. For all constant~$k$ the restriction is satisfied for some $p_c = \Omega(1)$. Our work partially solves a problem that has been open for more than 20 years.
Related papers
- $\ell_p$-Regression in the Arbitrary Partition Model of Communication [59.89387020011663]
We consider the randomized communication complexity of the distributed $ell_p$-regression problem in the coordinator model.
For $p = 2$, i.e., least squares regression, we give the first optimal bound of $tildeTheta(sd2 + sd/epsilon)$ bits.
For $p in (1,2)$,we obtain an $tildeO(sd2/epsilon + sd/mathrmpoly(epsilon)$ upper bound.
arXiv Detail & Related papers (2023-07-11T08:51:53Z) - Asymptotically Optimal Pure Exploration for Infinite-Armed Bandits [4.811176167998627]
We study pure exploration with infinitely many bandit arms generated i.i.d. from an unknown distribution.
Our goal is to efficiently select a single high quality arm whose average reward is, with probability $1-delta$, within $varepsilon$ of being among the top $eta$-fraction of arms.
arXiv Detail & Related papers (2023-06-03T04:00:47Z) - Lasting Diversity and Superior Runtime Guarantees for the $(\mu+1)$
Genetic Algorithm [7.421135890148154]
Genetic algorithm with population size $mu=O(n)$ optimize jump functions with gap size $k ge 3$ in time.
We show that this diversity persist with high probability for a time exponential in $mu$ (instead of quadratic)
We obtain stronger runtime guarantees, among them the statement that for all $cln(n)lemu le n/log n$, with $c$ a suitable constant, the runtime of the $(mu+1)$ GA on $mathrmJump_k$, with $k
arXiv Detail & Related papers (2023-02-24T10:50:24Z) - Near-Optimal Non-Convex Stochastic Optimization under Generalized
Smoothness [21.865728815935665]
Two recent works established the $O(epsilon-3)$ sample complexity to obtain an $O(epsilon)$-stationary point.
However, both require a large batch size on the order of $mathrmploy(epsilon-1)$, which is not only computationally burdensome but also unsuitable for streaming applications.
In this work, we solve the prior two problems simultaneously by revisiting a simple variant of the STORM algorithm.
arXiv Detail & Related papers (2023-02-13T00:22:28Z) - Self-adjusting Population Sizes for the $(1, \lambda)$-EA on Monotone
Functions [7.111443975103329]
We study the $(1,lambda)$-EA with mutation rate $c/n$ for $cle 1$, where the population size is adaptively controlled with the $(1:s+1)$-success rule.
We show that this setup with $c=1$ is efficient on onemax for $s1$, but inefficient if $s ge 18$.
arXiv Detail & Related papers (2022-04-01T15:46:12Z) - TURF: A Two-factor, Universal, Robust, Fast Distribution Learning
Algorithm [64.13217062232874]
One of its most powerful and successful modalities approximates every distribution to an $ell$ distance essentially at most a constant times larger than its closest $t$-piece degree-$d_$.
We provide a method that estimates this number near-optimally, hence helps approach the best possible approximation.
arXiv Detail & Related papers (2022-02-15T03:49:28Z) - Convergence Rate of the (1+1)-Evolution Strategy with Success-Based
Step-Size Adaptation on Convex Quadratic Functions [20.666734673282498]
The (1+1)-evolution strategy (ES) with success-based step-size adaptation is analyzed on a general convex quadratic function.
The convergence rate of the (1+1)-ES is derived explicitly and rigorously on a general convex quadratic function.
arXiv Detail & Related papers (2021-03-02T09:03:44Z) - Optimal Regret Algorithm for Pseudo-1d Bandit Convex Optimization [51.23789922123412]
We study online learning with bandit feedback (i.e. learner has access to only zeroth-order oracle) where cost/reward functions admit a "pseudo-1d" structure.
We show a lower bound of $min(sqrtdT, T3/4)$ for the regret of any algorithm, where $T$ is the number of rounds.
We propose a new algorithm sbcalg that combines randomized online gradient descent with a kernelized exponential weights method to exploit the pseudo-1d structure effectively.
arXiv Detail & Related papers (2021-02-15T08:16:51Z) - An Optimal Separation of Randomized and Quantum Query Complexity [67.19751155411075]
We prove that for every decision tree, the absolute values of the Fourier coefficients of a given order $ellsqrtbinomdell (1+log n)ell-1,$ sum to at most $cellsqrtbinomdell (1+log n)ell-1,$ where $n$ is the number of variables, $d$ is the tree depth, and $c>0$ is an absolute constant.
arXiv Detail & Related papers (2020-08-24T06:50:57Z) - The Sparse Hausdorff Moment Problem, with Application to Topic Models [5.151973524974052]
We give an algorithm for identifying a $k$-mixture using samples of $m=2k$ iid binary random variables.
It suffices to know the moments to additive accuracy $w_mincdotzetaO(k)$.
arXiv Detail & Related papers (2020-07-16T04:23:57Z) - Streaming Complexity of SVMs [110.63976030971106]
We study the space complexity of solving the bias-regularized SVM problem in the streaming model.
We show that for both problems, for dimensions of $frac1lambdaepsilon$, one can obtain streaming algorithms with spacely smaller than $frac1lambdaepsilon$.
arXiv Detail & Related papers (2020-07-07T17:10:00Z) - Runtime Analysis of Evolutionary Algorithms via Symmetry Arguments [9.853329403413701]
We prove that the selection-free steady state genetic algorithm analyzed by Sutton and Witt (GECCO) takes an expected number of $Omega (2n / sqrt n)$ to find any particular target search point.
Our result improves over the previous lower bound of $Omega(exp(ndelta/2))$ valid for population sizes $mu.
arXiv Detail & Related papers (2020-06-08T15:04:51Z) - A Rigorous Runtime Analysis of the $(1 + (\lambda, \lambda))$ GA on Jump
Functions [8.34061303235504]
We conduct the first runtime analysis of this algorithm on a multimodal problem class, the jump functions benchmark.
For the isolated problem of leaving the local optimum of jump functions, we determine provably optimal parameters that lead to a runtime of $(n/k)k/2 eTheta(k)$.
arXiv Detail & Related papers (2020-04-14T17:54:12Z) - Locally Private Hypothesis Selection [96.06118559817057]
We output a distribution from $mathcalQ$ whose total variation distance to $p$ is comparable to the best such distribution.
We show that the constraint of local differential privacy incurs an exponential increase in cost.
Our algorithms result in exponential improvements on the round complexity of previous methods.
arXiv Detail & Related papers (2020-02-21T18:30:48Z) - Tight Quantum Lower Bound for Approximate Counting with Quantum States [49.6558487240078]
We prove tight lower bounds for the following variant of the counting problem considered by Aaronson, Kothari, Kretschmer, and Thaler ( 2020)
The task is to distinguish whether an input set $xsubseteq [n]$ has size either $k$ or $k'=(1+varepsilon)k$.
arXiv Detail & Related papers (2020-02-17T10:53:50Z) - On the Complexity of Minimizing Convex Finite Sums Without Using the
Indices of the Individual Functions [62.01594253618911]
We exploit the finite noise structure of finite sums to derive a matching $O(n2)$-upper bound under the global oracle model.
Following a similar approach, we propose a novel adaptation of SVRG which is both emphcompatible with oracles, and achieves complexity bounds of $tildeO(n2+nsqrtL/mu)log (1/epsilon)$ and $O(nsqrtL/epsilon)$, for $mu>0$ and $mu=0$
arXiv Detail & Related papers (2020-02-09T03:39:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.