LaPlaSS: Latent Space Planning for Stochastic Systems
- URL: http://arxiv.org/abs/2404.07063v1
- Date: Wed, 10 Apr 2024 14:52:35 GMT
- Title: LaPlaSS: Latent Space Planning for Stochastic Systems
- Authors: Marlyse Reeves, Brian C. Williams,
- Abstract summary: We propose a "generate-and-test" approach to risk-bounded planning for autonomous mobile agents.
We use a variational autoencoder to learn a latent linear dynamics model and encode the planning problem into the latent space to generate the candidate trajectory.
We demonstrate that our algorithm, LaPlaSS, is able to generate trajectory plans with bounded risk for a real-world agent with learned dynamics.
- Score: 8.529245639496274
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Autonomous mobile agents often operate in hazardous environments, necessitating an awareness of safety. These agents can have non-linear, stochastic dynamics that must be considered during planning to guarantee bounded risk. Most state of the art methods require closed-form dynamics to verify plan correctness and safety however modern robotic systems often have dynamics that are learned from data. Thus, there is a need to perform efficient trajectory planning with guarantees on risk for agents without known dynamics models. We propose a "generate-and-test" approach to risk-bounded planning in which a planner generates a candidate trajectory using an approximate linear dynamics model and a validator assesses the risk of the trajectory, computing additional safety constraints for the planner if the candidate does not satisfy the desired risk bound. To acquire the approximate model, we use a variational autoencoder to learn a latent linear dynamics model and encode the planning problem into the latent space to generate the candidate trajectory. The VAE also serves to sample trajectories around the candidate to use in the validator. We demonstrate that our algorithm, LaPlaSS, is able to generate trajectory plans with bounded risk for a real-world agent with learned dynamics and is an order of magnitude more efficient than the state of the art.
Related papers
- ReGentS: Real-World Safety-Critical Driving Scenario Generation Made Stable [88.08120417169971]
Machine learning based autonomous driving systems often face challenges with safety-critical scenarios that are rare in real-world data.
This work explores generating safety-critical driving scenarios by modifying complex real-world regular scenarios through trajectory optimization.
Our approach addresses unrealistic diverging trajectories and unavoidable collision scenarios that are not useful for training robust planner.
arXiv Detail & Related papers (2024-09-12T08:26:33Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
This paper aims to recover the structure of rewards and environment dynamics that underlie observed actions in a fixed, finite set of demonstrations from an expert agent.
Accurate models of expertise in executing a task has applications in safety-sensitive applications such as clinical decision making and autonomous driving.
arXiv Detail & Related papers (2023-02-15T04:14:20Z) - Statistical Safety and Robustness Guarantees for Feedback Motion
Planning of Unknown Underactuated Stochastic Systems [1.0323063834827415]
We propose a sampling-based planner that uses the mean dynamics model and simultaneously bounds the closed-loop tracking error via a learned disturbance bound.
We validate that our guarantees translate to empirical safety in simulation on a 10D quadrotor, and in the real world on a physical CrazyFlie quadrotor and Clearpath Jackal robot.
arXiv Detail & Related papers (2022-12-13T19:38:39Z) - Generating Useful Accident-Prone Driving Scenarios via a Learned Traffic
Prior [135.78858513845233]
STRIVE is a method to automatically generate challenging scenarios that cause a given planner to produce undesirable behavior, like collisions.
To maintain scenario plausibility, the key idea is to leverage a learned model of traffic motion in the form of a graph-based conditional VAE.
A subsequent optimization is used to find a "solution" to the scenario, ensuring it is useful to improve the given planner.
arXiv Detail & Related papers (2021-12-09T18:03:27Z) - Risk Conditioned Neural Motion Planning [14.018786843419862]
Risk-bounded motion planning is an important yet difficult problem for safety-critical tasks.
We propose an extension of soft actor critic model to estimate the execution risk of a plan through a risk critic.
We show the advantage of our model in terms of both computational time and plan quality, compared to a state-of-the-art mathematical programming baseline.
arXiv Detail & Related papers (2021-08-04T05:33:52Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z) - Risk-Sensitive Sequential Action Control with Multi-Modal Human
Trajectory Forecasting for Safe Crowd-Robot Interaction [55.569050872780224]
We present an online framework for safe crowd-robot interaction based on risk-sensitive optimal control, wherein the risk is modeled by the entropic risk measure.
Our modular approach decouples the crowd-robot interaction into learning-based prediction and model-based control.
A simulation study and a real-world experiment show that the proposed framework can accomplish safe and efficient navigation while avoiding collisions with more than 50 humans in the scene.
arXiv Detail & Related papers (2020-09-12T02:02:52Z) - Chance-Constrained Trajectory Optimization for Safe Exploration and
Learning of Nonlinear Systems [81.7983463275447]
Learning-based control algorithms require data collection with abundant supervision for training.
We present a new approach for optimal motion planning with safe exploration that integrates chance-constrained optimal control with dynamics learning and feedback control.
arXiv Detail & Related papers (2020-05-09T05:57:43Z) - Online Mapping and Motion Planning under Uncertainty for Safe Navigation
in Unknown Environments [3.2296078260106174]
This manuscript proposes an uncertainty-based framework for mapping and planning feasible motions online with probabilistic safety-guarantees.
The proposed approach deals with the motion, probabilistic safety, and online computation constraints by: (i) mapping the surroundings to build an uncertainty-aware representation of the environment, and (ii) iteratively (re)planning to goal that are kinodynamically feasible and probabilistically safe through a multi-layered sampling-based planner in the belief space.
arXiv Detail & Related papers (2020-04-26T08:53:37Z) - Safe Mission Planning under Dynamical Uncertainties [15.533842336139063]
This paper considers safe robot mission planning in uncertain dynamical environments.
It is a challenging problem due to modeling and integrating dynamical uncertainties into a safe planning framework.
arXiv Detail & Related papers (2020-03-05T20:45:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.