論文の概要: Exploring Concept Depth: How Large Language Models Acquire Knowledge at Different Layers?
- arxiv url: http://arxiv.org/abs/2404.07066v1
- Date: Wed, 10 Apr 2024 14:56:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-11 14:11:27.405982
- Title: Exploring Concept Depth: How Large Language Models Acquire Knowledge at Different Layers?
- Title(参考訳): 概念の深さを探る: 大規模言語モデルはどのように異なる層で知識を取得するか?
- Authors: Mingyu Jin, Qinkai Yu, Jingyuan Huang, Qingcheng Zeng, Zhenting Wang, Wenyue Hua, Haiyan Zhao, Kai Mei, Yanda Meng, Kaize Ding, Fan Yang, Mengnan Du, Yongfeng Zhang,
- Abstract要約: 本稿では,異なる概念が大規模言語モデルの異なる層で学習される現象について考察する。
抽象化のレベルで概念の難しさを定義し、ここでは事実、感情、推論によって明確に分類する。
モデルの異なる層から表現を抽出し,これらを分類タスクに適用するために,探索手法を用いる。
- 参考スコア(独自算出の注目度): 57.04803703952721
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper studies the phenomenon that different concepts are learned in different layers of large language models, i.e. more difficult concepts are fully acquired with deeper layers. We define the difficulty of concepts by the level of abstraction, and here it is crudely categorized by factual, emotional, and inferential. Each category contains a spectrum of tasks, arranged from simple to complex. For example, within the factual dimension, tasks range from lie detection to categorizing mathematical problems. We employ a probing technique to extract representations from different layers of the model and apply these to classification tasks. Our findings reveal that models tend to efficiently classify simpler tasks, indicating that these concepts are learned in shallower layers. Conversely, more complex tasks may only be discernible at deeper layers, if at all. This paper explores the implications of these findings for our understanding of model learning processes and internal representations. Our implementation is available at \url{https://github.com/Luckfort/CD}.
- Abstract(参考訳): 本稿では,異なる概念が大規模言語モデルの異なる層で学習される現象,すなわちより難しい概念がより深い層で完全に獲得される現象について考察する。
抽象化のレベルで概念の難しさを定義し、ここでは事実、感情、推論によって明確に分類する。
各カテゴリは、単純から複雑に配置されたタスクのスペクトルを含む。
例えば、実数次元内では、タスクは嘘検出から数学的問題の分類まで様々である。
モデルの異なる層から表現を抽出し,これらを分類タスクに適用するために,探索手法を用いる。
その結果、モデルがより単純なタスクを効率的に分類し、これらの概念がより浅い層で学習されることが判明した。
逆に、より複雑なタスクは、もっと深い層でしか識別できないかもしれません。
本稿では,モデル学習プロセスと内部表現の理解にこれらの知見がもたらす意味について考察する。
我々の実装は \url{https://github.com/Luckfort/CD} で利用可能です。
関連論文リスト
- Layer by Layer: Uncovering Where Multi-Task Learning Happens in Instruction-Tuned Large Language Models [22.676688441884465]
タスクの多種多様な配列で訓練済みの大規模言語モデル(LLM)を微調整することが、モデル構築の一般的なアプローチとなっている。
本研究では,事前学習したLLMに符号化されたタスク固有情報と,その表現に対する指導指導の効果について検討する。
論文 参考訳(メタデータ) (2024-10-25T23:38:28Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - Looking into Black Box Code Language Models [2.5324062203985935]
私たちは、最先端の2つのコードLM、Codegen-MonoとPloycoderを使用し、Java、Go、Pythonの3つの広く使われているプログラミング言語を使用します。
CodeLMの性能を損なうことなく、フィードフォワード層内で興味ある概念を編集できることを示す。
論文 参考訳(メタデータ) (2024-07-05T21:13:41Z) - Hierarchical Deconstruction of LLM Reasoning: A Graph-Based Framework for Analyzing Knowledge Utilization [30.349165483935682]
大規模言語モデル(LLM)が推論の知識をどのように利用するのかは、まだよく分かっていない。
我々は,DepthQAデータセットを開発し,質問を3つの深さに分解する: (i)概念的知識の想起, (ii)手続き的知識の適用, (iii)戦略的知識の分析。
差分パターンは、モデルのキャパシティとトレーニングデータ記憶の可能性にまたがって観察される。
論文 参考訳(メタデータ) (2024-06-27T19:29:36Z) - Can Large Language Models Understand DL-Lite Ontologies? An Empirical Study [10.051572826948762]
大規模モデル(LLM)は、幅広いタスクを解く上で大きな成果を上げている。
我々は、記述論理(DL-Lite)を理解するLLMの能力を実証的に分析する。
LLMは概念と役割の形式的構文とモデル理論的意味論を理解する。
論文 参考訳(メタデータ) (2024-06-25T13:16:34Z) - Cantor: Inspiring Multimodal Chain-of-Thought of MLLM [83.6663322930814]
視覚的コンテキスト獲得と論理的推論の集約は、視覚的推論タスクに取り組む上で重要であると我々は主張する。
我々はCantorと呼ばれる革新的なマルチモーダルCoTフレームワークを提案し、その特徴は知覚決定アーキテクチャである。
提案手法の有効性を実証し,マルチモーダルCoT性能の大幅な向上を示した。
論文 参考訳(メタデータ) (2024-04-24T17:59:48Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
大規模言語モデル(LLM)は、幅広いタスクにまたがる顕著な機能を示している。
自然言語で説明できる能力により、LLMは人間に与えられるパターンのスケールと複雑さを拡大することができる。
これらの新しい機能は、幻覚的な説明や膨大な計算コストなど、新しい課題を提起する。
論文 参考訳(メタデータ) (2024-01-30T17:38:54Z) - Is Bigger and Deeper Always Better? Probing LLaMA Across Scales and
Layers [73.28459749681879]
本稿では,自然言語処理におけるオープンソースの基盤モデルであるLLaMAについて述べる。
LLaMAを生成出力で評価する代わりに、本質的な理解を探索するために複数の選択タスクを設計する。
設計された探索タスクに基づいて、いくつかの重要な発見と珍しい発見を公表する。
論文 参考訳(メタデータ) (2023-12-07T14:50:41Z) - Characterizing Large Language Model Geometry Helps Solve Toxicity Detection and Generation [15.77263269398368]
大規模言語モデル(LLM)は、現在のAIのブレークスルーを促進する。
我々は幾何学のレンズを通してLLMの内部機構に光を当てた。
我々は,任意の(事前学習された)LLMから抽出できる解釈可能な幾何学的特徴を導出する。
論文 参考訳(メタデータ) (2023-12-04T06:01:32Z) - Understanding Masked Autoencoders via Hierarchical Latent Variable
Models [109.35382136147349]
Masked Autoencoder (MAE) は近年,様々な視覚タスクにおいて顕著な成功を収めている。
MAEに関する興味深い経験的観察の出現にもかかわらず、理論的に原理化された理解はいまだに欠如している。
論文 参考訳(メタデータ) (2023-06-08T03:00:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。