Unveiling the Impact of Macroeconomic Policies: A Double Machine Learning Approach to Analyzing Interest Rate Effects on Financial Markets
- URL: http://arxiv.org/abs/2404.07225v1
- Date: Sun, 31 Mar 2024 01:55:21 GMT
- Title: Unveiling the Impact of Macroeconomic Policies: A Double Machine Learning Approach to Analyzing Interest Rate Effects on Financial Markets
- Authors: Anoop Kumar, Suresh Dodda, Navin Kamuni, Rajeev Kumar Arora,
- Abstract summary: The study contrasts gradient boosting and linear regression models using the Double Machine Learning (DML) framework.
Results indicate that gradient boosting is a useful tool for predicting fund returns.
This understanding of the relationship between interest rates and fund performance provides opportunities for additional research and insightful, data-driven advice for fund managers and investors.
- Score: 3.082802504891278
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study examines the effects of macroeconomic policies on financial markets using a novel approach that combines Machine Learning (ML) techniques and causal inference. It focuses on the effect of interest rate changes made by the US Federal Reserve System (FRS) on the returns of fixed income and equity funds between January 1986 and December 2021. The analysis makes a distinction between actively and passively managed funds, hypothesizing that the latter are less susceptible to changes in interest rates. The study contrasts gradient boosting and linear regression models using the Double Machine Learning (DML) framework, which supports a variety of statistical learning techniques. Results indicate that gradient boosting is a useful tool for predicting fund returns; for example, a 1% increase in interest rates causes an actively managed fund's return to decrease by -11.97%. This understanding of the relationship between interest rates and fund performance provides opportunities for additional research and insightful, data-driven advice for fund managers and investors
Related papers
- AI in Investment Analysis: LLMs for Equity Stock Ratings [0.2916558661202724]
This paper explores the application of Large Language Models (LLMs) to generate multi-horizon stock ratings.
Our study addresses these issues by leveraging LLMs to improve the accuracy and consistency of stock ratings.
Our results show that our benchmark method outperforms traditional stock rating methods when assessed by forward returns.
arXiv Detail & Related papers (2024-10-30T15:06:57Z) - Trading through Earnings Seasons using Self-Supervised Contrastive Representation Learning [1.6574413179773761]
Contrastive Earnings Transformer (CET) is a self-supervised learning approach rooted in Contrastive Predictive Coding (CPC)
Our research delves deep into the intricacies of stock data, evaluating how various models handle the rapidly changing relevance of earnings data over time and over different sectors.
CET's foundation on CPC allows for a nuanced understanding, facilitating consistent stock predictions even as the earnings data ages.
arXiv Detail & Related papers (2024-09-25T22:09:59Z) - Harnessing Earnings Reports for Stock Predictions: A QLoRA-Enhanced LLM Approach [6.112119533910774]
This paper introduces an advanced approach by employing Large Language Models (LLMs) instruction fine-tuned with a novel combination of instruction-based techniques and quantized low-rank adaptation (QLoRA) compression.
Our methodology integrates 'base factors', such as financial metric growth and earnings transcripts, with 'external factors', including recent market indices performances and analyst grades, to create a rich, supervised dataset.
This study not only demonstrates the power of integrating cutting-edge AI with fine-tuned financial data but also paves the way for future research in enhancing AI-driven financial analysis tools.
arXiv Detail & Related papers (2024-08-13T04:53:31Z) - American Option Pricing using Self-Attention GRU and Shapley Value
Interpretation [0.0]
We propose a machine learning method for forecasting the prices of SPY (ETF) option based on gated recurrent unit (GRU) and self-attention mechanism.
We built four different machine learning models, including multilayer perceptron (MLP), long short-term memory (LSTM), self-attention LSTM, and self-attention GRU.
arXiv Detail & Related papers (2023-10-19T06:05:46Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - Factor Investing with a Deep Multi-Factor Model [123.52358449455231]
We develop a novel deep multi-factor model that adopts industry neutralization and market neutralization modules with clear financial insights.
Tests on real-world stock market data demonstrate the effectiveness of our deep multi-factor model.
arXiv Detail & Related papers (2022-10-22T14:47:11Z) - Algorithmic Fairness and Vertical Equity: Income Fairness with IRS Tax
Audit Models [73.24381010980606]
This study examines issues of algorithmic fairness in the context of systems that inform tax audit selection by the IRS.
We show how the use of more flexible machine learning methods for selecting audits may affect vertical equity.
Our results have implications for the design of algorithmic tools across the public sector.
arXiv Detail & Related papers (2022-06-20T16:27:06Z) - REST: Relational Event-driven Stock Trend Forecasting [76.08435590771357]
We propose a relational event-driven stock trend forecasting (REST) framework, which can address the shortcoming of existing methods.
To remedy the first shortcoming, we propose to model the stock context and learn the effect of event information on the stocks under different contexts.
To address the second shortcoming, we construct a stock graph and design a new propagation layer to propagate the effect of event information from related stocks.
arXiv Detail & Related papers (2021-02-15T07:22:09Z) - Deep Portfolio Optimization via Distributional Prediction of Residual
Factors [3.9189409002585562]
We propose a novel method of constructing a portfolio based on predicting the distribution of a financial quantity called residual factors.
We demonstrate the efficacy of our method on U.S. and Japanese stock market data.
arXiv Detail & Related papers (2020-12-14T04:09:52Z) - A Sentiment Analysis Approach to the Prediction of Market Volatility [62.997667081978825]
We have explored the relationship between sentiment extracted from financial news and tweets and FTSE100 movements.
The sentiment captured from news headlines could be used as a signal to predict market returns; the same does not apply for volatility.
We developed an accurate classifier for the prediction of market volatility in response to the arrival of new information.
arXiv Detail & Related papers (2020-12-10T01:15:48Z) - Reinforcement-Learning based Portfolio Management with Augmented Asset
Movement Prediction States [71.54651874063865]
Portfolio management (PM) aims to achieve investment goals such as maximal profits or minimal risks.
In this paper, we propose SARL, a novel State-Augmented RL framework for PM.
Our framework aims to address two unique challenges in financial PM: (1) data Heterogeneous data -- the collected information for each asset is usually diverse, noisy and imbalanced (e.g., news articles); and (2) environment uncertainty -- the financial market is versatile and non-stationary.
arXiv Detail & Related papers (2020-02-09T08:10:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.