Quantum algorithms to simulate quadratic classical Hamiltonians and optimal control
- URL: http://arxiv.org/abs/2404.07303v1
- Date: Wed, 10 Apr 2024 18:53:22 GMT
- Title: Quantum algorithms to simulate quadratic classical Hamiltonians and optimal control
- Authors: Hari Krovi,
- Abstract summary: We develop quantum algorithms to estimate quantities of interest in a given classical mechanical system.
We consider the problem of designing optimal control of classical systems, which can be cast as the second variation of the Lagrangian.
We give an efficient quantum algorithm to solve the Riccati differential equation well into the nonlinear regime.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Simulation of realistic classical mechanical systems is of great importance to many areas of engineering such as robotics, dynamics of rotating machinery and control theory. In this work, we develop quantum algorithms to estimate quantities of interest such as the kinetic energy in a given classical mechanical system in the presence of friction or damping as well as forcing or source terms, which makes the algorithm of practical interest. We show that for such systems, the quantum algorithm scales polynomially with the logarithm of the dimension of the system. We cast this problem in terms of Hamilton's equations of motion (equivalent to the first variation of the Lagrangian) and solve them using quantum algorithms for differential equations. We then consider the hardness of estimating the kinetic energy of a damped coupled oscillator system. We show that estimating the kinetic energy at a given time of this system to within additive precision is BQP hard when the strength of the damping term is bounded by an inverse polynomial in the number of qubits. We then consider the problem of designing optimal control of classical systems, which can be cast as the second variation of the Lagrangian. In this direction, we first consider the Riccati equation, which is a nonlinear differential equation ubiquitous in control theory. We give an efficient quantum algorithm to solve the Riccati differential equation well into the nonlinear regime. To our knowledge, this is the first example of any nonlinear differential equation that can be solved when the strength of the nonlinearity is asymptotically greater than the amount of dissipation. We then show how to use this algorithm to solve the linear quadratic regulator problem, which is an example of the Hamilton-Jacobi-Bellman equation.
Related papers
- Quantum Simulation of Nonlinear Dynamical Systems Using Repeated Measurement [42.896772730859645]
We present a quantum algorithm based on repeated measurement to solve initial-value problems for nonlinear ordinary differential equations.
We apply this approach to the classic logistic and Lorenz systems in both integrable and chaotic regimes.
arXiv Detail & Related papers (2024-10-04T18:06:12Z) - Quantum and classical algorithms for nonlinear unitary dynamics [0.5729426778193399]
We present a quantum algorithm for a non-linear differential equation of the form $fracd|urangledt.
We also introduce a classical algorithm based on the Euler method allowing comparably scaling to the quantum algorithm in a restricted case.
arXiv Detail & Related papers (2024-07-10T14:08:58Z) - The cost of solving linear differential equations on a quantum computer: fast-forwarding to explicit resource counts [0.0]
We give the first non-asymptotic computation of the cost of encoding the solution to general linear ordinary differential equations into quantum states.
We show that the stability properties of a large class of classical dynamics allow their fast-forwarding.
We find that the history state can always be output with complexity $O(T1/2)$ for any stable linear system.
arXiv Detail & Related papers (2023-09-14T17:25:43Z) - Solving Systems of Linear Equations: HHL from a Tensor Networks Perspective [39.58317527488534]
We present an algorithm for solving systems of linear equations based on the HHL algorithm with a novel qudits methodology.
We perform a quantum-inspired version on tensor networks, taking advantage of their ability to perform non-unitary operations such as projection.
arXiv Detail & Related papers (2023-09-11T08:18:41Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - A quantum algorithm for the linear Vlasov equation with collisions [0.0]
We present a quantum algorithm that simulates the linearized Vlasov equation with and without collisions.
We show that a quadratic speedup in system size is attainable.
arXiv Detail & Related papers (2023-03-06T19:19:30Z) - Correspondence between open bosonic systems and stochastic differential
equations [77.34726150561087]
We show that there can also be an exact correspondence at finite $n$ when the bosonic system is generalized to include interactions with the environment.
A particular system with the form of a discrete nonlinear Schr"odinger equation is analyzed in more detail.
arXiv Detail & Related papers (2023-02-03T19:17:37Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Variational quantum algorithm based on the minimum potential energy for
solving the Poisson equation [7.620967781722716]
We present a variational quantum algorithm for solving the Poisson equation.
The proposed method defines the total potential energy of the Poisson equation as a Hamiltonian.
Because the number of terms is independent of the size of the problem, this method requires relatively few quantum measurements.
arXiv Detail & Related papers (2021-06-17T09:01:53Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.