Interactive Learning of Physical Object Properties Through Robot Manipulation and Database of Object Measurements
- URL: http://arxiv.org/abs/2404.07344v1
- Date: Wed, 10 Apr 2024 20:59:59 GMT
- Title: Interactive Learning of Physical Object Properties Through Robot Manipulation and Database of Object Measurements
- Authors: Andrej Kruzliak, Jiri Hartvich, Shubhan P. Patni, Lukas Rustler, Jan Kristof Behrens, Fares J. Abu-Dakka, Krystian Mikolajczyk, Ville Kyrki, Matej Hoffmann,
- Abstract summary: The framework involves exploratory action selection to maximize learning about objects on a table.
A robot pipeline integrates with a logging module and an online database of objects, containing over 24,000 measurements of 63 objects with different grippers.
- Score: 20.301193437161867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work presents a framework for automatically extracting physical object properties, such as material composition, mass, volume, and stiffness, through robot manipulation and a database of object measurements. The framework involves exploratory action selection to maximize learning about objects on a table. A Bayesian network models conditional dependencies between object properties, incorporating prior probability distributions and uncertainty associated with measurement actions. The algorithm selects optimal exploratory actions based on expected information gain and updates object properties through Bayesian inference. Experimental evaluation demonstrates effective action selection compared to a baseline and correct termination of the experiments if there is nothing more to be learned. The algorithm proved to behave intelligently when presented with trick objects with material properties in conflict with their appearance. The robot pipeline integrates with a logging module and an online database of objects, containing over 24,000 measurements of 63 objects with different grippers. All code and data are publicly available, facilitating automatic digitization of objects and their physical properties through exploratory manipulations.
Related papers
- Learning Object Properties Using Robot Proprioception via Differentiable Robot-Object Interaction [52.12746368727368]
Differentiable simulation has become a powerful tool for system identification.
Our approach calibrates object properties by using information from the robot, without relying on data from the object itself.
We demonstrate the effectiveness of our method on a low-cost robotic platform.
arXiv Detail & Related papers (2024-10-04T20:48:38Z) - Articulated Object Manipulation using Online Axis Estimation with SAM2-Based Tracking [59.87033229815062]
Articulated object manipulation requires precise object interaction, where the object's axis must be carefully considered.
Previous research employed interactive perception for manipulating articulated objects, but typically, open-loop approaches often suffer from overlooking the interaction dynamics.
We present a closed-loop pipeline integrating interactive perception with online axis estimation from segmented 3D point clouds.
arXiv Detail & Related papers (2024-09-24T17:59:56Z) - Learning active tactile perception through belief-space control [21.708391958446274]
We propose a method that autonomously learns tactile exploration policies by developing a generative world model.
We evaluate our method on three simulated tasks where the goal is to estimate a desired object property.
We find that our method is able to discover policies that efficiently gather information about the desired property in an intuitive manner.
arXiv Detail & Related papers (2023-11-30T21:54:42Z) - Learning Extrinsic Dexterity with Parameterized Manipulation Primitives [8.7221770019454]
We learn a sequence of actions that utilize the environment to change the object's pose.
Our approach can control the object's state through exploiting interactions between the object, the gripper, and the environment.
We evaluate our approach on picking box-shaped objects of various weight, shape, and friction properties from a constrained table-top workspace.
arXiv Detail & Related papers (2023-10-26T21:28:23Z) - Localizing Active Objects from Egocentric Vision with Symbolic World
Knowledge [62.981429762309226]
The ability to actively ground task instructions from an egocentric view is crucial for AI agents to accomplish tasks or assist humans virtually.
We propose to improve phrase grounding models' ability on localizing the active objects by: learning the role of objects undergoing change and extracting them accurately from the instructions.
We evaluate our framework on Ego4D and Epic-Kitchens datasets.
arXiv Detail & Related papers (2023-10-23T16:14:05Z) - Multi-Object Graph Affordance Network: Goal-Oriented Planning through Learned Compound Object Affordances [1.9336815376402723]
The Multi-Object Graph Affordance Network models complex compound object affordances by learning the outcomes of robot actions that facilitate interactions between an object and a compound.
We show that our system successfully modeled the affordances of compound objects that include concave and convex objects, in both simulated and real-world environments.
arXiv Detail & Related papers (2023-09-19T08:40:46Z) - InterTracker: Discovering and Tracking General Objects Interacting with
Hands in the Wild [40.489171608114574]
Existing methods rely on frame-based detectors to locate interacting objects.
We propose to leverage hand-object interaction to track interactive objects.
Our proposed method outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2023-08-06T09:09:17Z) - H-SAUR: Hypothesize, Simulate, Act, Update, and Repeat for Understanding
Object Articulations from Interactions [62.510951695174604]
"Hypothesize, Simulate, Act, Update, and Repeat" (H-SAUR) is a probabilistic generative framework that generates hypotheses about how objects articulate given input observations.
We show that the proposed model significantly outperforms the current state-of-the-art articulated object manipulation framework.
We further improve the test-time efficiency of H-SAUR by integrating a learned prior from learning-based vision models.
arXiv Detail & Related papers (2022-10-22T18:39:33Z) - Learn to Predict How Humans Manipulate Large-sized Objects from
Interactive Motions [82.90906153293585]
We propose a graph neural network, HO-GCN, to fuse motion data and dynamic descriptors for the prediction task.
We show the proposed network that consumes dynamic descriptors can achieve state-of-the-art prediction results and help the network better generalize to unseen objects.
arXiv Detail & Related papers (2022-06-25T09:55:39Z) - Contrastive Object Detection Using Knowledge Graph Embeddings [72.17159795485915]
We compare the error statistics of the class embeddings learned from a one-hot approach with semantically structured embeddings from natural language processing or knowledge graphs.
We propose a knowledge-embedded design for keypoint-based and transformer-based object detection architectures.
arXiv Detail & Related papers (2021-12-21T17:10:21Z) - How to select and use tools? : Active Perception of Target Objects Using
Multimodal Deep Learning [9.677391628613025]
We focus on active perception using multimodal sensorimotor data while a robot interacts with objects.
We construct a deep neural networks (DNN) model that learns to recognize object characteristics.
We also examine the contributions of images, force, and tactile data and show that learning a variety of multimodal information results in rich perception for tool use.
arXiv Detail & Related papers (2021-06-04T12:49:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.