論文の概要: Privacy preserving layer partitioning for Deep Neural Network models
- arxiv url: http://arxiv.org/abs/2404.07437v1
- Date: Thu, 11 Apr 2024 02:39:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-12 15:18:26.800594
- Title: Privacy preserving layer partitioning for Deep Neural Network models
- Title(参考訳): ディープニューラルネットワークモデルのためのプライバシ保護層分割
- Authors: Kishore Rajasekar, Randolph Loh, Kar Wai Fok, Vrizlynn L. L. Thing,
- Abstract要約: Trusted Execution Environments (TEEs)は、暗号化、復号化、セキュリティ、整合性チェックなどの追加レイヤによって、大幅なパフォーマンスオーバーヘッドを発生させることができる。
我々はGPUに層分割技術とオフロード計算を導入する。
我々は、訓練された条件付き生成逆数ネットワーク(c-GAN)を用いた入力再構成攻撃の防御におけるアプローチの有効性を示す実験を行った。
- 参考スコア(独自算出の注目度): 0.21470800327528838
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: MLaaS (Machine Learning as a Service) has become popular in the cloud computing domain, allowing users to leverage cloud resources for running private inference of ML models on their data. However, ensuring user input privacy and secure inference execution is essential. One of the approaches to protect data privacy and integrity is to use Trusted Execution Environments (TEEs) by enabling execution of programs in secure hardware enclave. Using TEEs can introduce significant performance overhead due to the additional layers of encryption, decryption, security and integrity checks. This can lead to slower inference times compared to running on unprotected hardware. In our work, we enhance the runtime performance of ML models by introducing layer partitioning technique and offloading computations to GPU. The technique comprises two distinct partitions: one executed within the TEE, and the other carried out using a GPU accelerator. Layer partitioning exposes intermediate feature maps in the clear which can lead to reconstruction attacks to recover the input. We conduct experiments to demonstrate the effectiveness of our approach in protecting against input reconstruction attacks developed using trained conditional Generative Adversarial Network(c-GAN). The evaluation is performed on widely used models such as VGG-16, ResNet-50, and EfficientNetB0, using two datasets: ImageNet for Image classification and TON IoT dataset for cybersecurity attack detection.
- Abstract(参考訳): MLaaS(Machine Learning as a Service)は、クラウドコンピューティングの分野で人気があり、ユーザはクラウドリソースを利用して、データ上でMLモデルのプライベート推論を実行することができる。
しかし、ユーザ入力のプライバシとセキュアな推論実行を保証することが不可欠である。
データプライバシと整合性を保護するアプローチの1つは、セキュアなハードウェアエンクレーブでプログラムの実行を可能にすることで、Trusted Execution Environments(TEEs)を使用することである。
TEEを使用することで、暗号化、復号化、セキュリティ、整合性チェックなどの追加レイヤによって、大幅なパフォーマンス上のオーバーヘッドが発生する可能性がある。
これは、保護されていないハードウェア上で実行する場合と比較して、推論時間が遅くなる可能性がある。
本研究では,階層分割技術を導入し,GPUに計算処理をオフロードすることで,MLモデルのランタイム性能を向上させる。
このテクニックは、2つの異なるパーティションで構成されている。1つはTEE内で実行され、もう1つはGPUアクセラレータを使用して実行される。
レイヤパーティショニングは、入力を復元するための再構築攻撃につながる可能性のある、中間フィーチャーマップをクリアに公開する。
我々は,訓練された条件付き生成逆数ネットワーク(c-GAN)を用いた入力再構成攻撃に対する防御手法の有効性を示す実験を行った。
この評価は、VGG-16、ResNet-50、EfficientNetB0などの広く使われているモデルで、画像分類のためのImageNetとサイバーセキュリティ攻撃検出のためのTON IoTデータセットの2つのデータセットを使用して行われる。
関連論文リスト
- Efficient Adversarial Training in LLMs with Continuous Attacks [99.5882845458567]
大規模言語モデル(LLM)は、安全ガードレールをバイパスできる敵攻撃に対して脆弱である。
本稿では,2つの損失からなる高速対向訓練アルゴリズム(C-AdvUL)を提案する。
C-AdvIPOは、対向的に堅牢なアライメントのためのユーティリティデータを必要としない、対向型のIPOである。
論文 参考訳(メタデータ) (2024-05-24T14:20:09Z) - Tempo: Confidentiality Preservation in Cloud-Based Neural Network
Training [8.187538747666203]
クラウドディープラーニングプラットフォームは、計算リソースが不足している顧客に対して、費用対効果の高いディープニューラルネットワーク(DNN)トレーニングを提供する。
近年、研究者は、CPU信頼実行環境(TEE)を活用して、ディープラーニングにおけるデータのプライバシ保護を模索している。
本稿では、TEEと分散GPUと連携するクラウドベースの初のディープラーニングシステムであるTempoについて述べる。
論文 参考訳(メタデータ) (2024-01-21T15:57:04Z) - MirrorNet: A TEE-Friendly Framework for Secure On-device DNN Inference [14.08010398777227]
ディープニューラルネットワーク(DNN)モデルは、リアルタイム推論のためのエッジデバイスで普及している。
既存の防御アプローチでは、モデルの機密性を完全に保護できないか、あるいは重大なレイテンシの問題が発生する。
本稿では、モデル機密性を保護するため、任意のDNNモデルに対してTEEフレンドリーな実装を生成するMirrorNetを提案する。
評価のために、MirrorNetは認証と違法使用の間に18.6%の精度差を達成でき、ハードウェアオーバーヘッドは0.99%に過ぎなかった。
論文 参考訳(メタデータ) (2023-11-16T01:21:19Z) - $\Lambda$-Split: A Privacy-Preserving Split Computing Framework for
Cloud-Powered Generative AI [3.363904632882723]
本稿では,計算オフロードを容易にする分割計算フレームワークである$Lambda$-Splitを紹介する。
Lambda$-Splitでは、生成モデル(通常はディープニューラルネットワーク(DNN))が3つのサブモデルに分割され、ユーザのローカルデバイスとクラウドサーバに分散される。
このアーキテクチャにより、隠された層出力のみが送信されることが保証され、プライバシーに敏感な生入力および出力データの外部送信が防止される。
論文 参考訳(メタデータ) (2023-10-23T07:44:04Z) - Secure Deep Learning-based Distributed Intelligence on Pocket-sized
Drones [75.80952211739185]
パームサイズのナノドロンはエッジノードの魅力的なクラスであるが、その限られた計算資源は大規模なディープラーニングモデルの実行を妨げている。
エッジフォッグ計算のパラダイムを採用することで、計算の一部をフォグにオフロードすることができるが、フォグノードや通信リンクが信頼できない場合、セキュリティ上の懸念が生じる。
ナノドローン上でランダムなサブネットワークを冗長に実行することにより,霧の計算を検証する分散エッジフォッグ実行方式を提案する。
論文 参考訳(メタデータ) (2023-07-04T08:29:41Z) - DarKnight: An Accelerated Framework for Privacy and Integrity Preserving
Deep Learning Using Trusted Hardware [3.1853566662905943]
DarKnightは大規模なDNNトレーニングのためのフレームワークで、入力のプライバシと整合性を保護する。
DarKnightは、信頼できる実行環境(TEE)とアクセラレータ間の協調実行に依存している。
DarKnightのデータ難読化戦略は、クラウドサーバにおける証明可能なデータのプライバシと計算の整合性を提供する。
論文 参考訳(メタデータ) (2022-06-30T19:58:36Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
我々は、アウト・オブ・ディストリビューション(OOD)インプットと敵攻撃(AA)を検出する新しい手法であるDAINを導入する。
本手法は,ニューラルネットワークの内部動作を監視し,活性化分布の密度推定器を学習する。
当社のモデルは,特別なアクセラレータを必要とせずに,効率的な計算とデプロイが可能な単一のGPUでトレーニングすることが可能です。
論文 参考訳(メタデータ) (2021-05-30T22:07:13Z) - Perun: Secure Multi-Stakeholder Machine Learning Framework with GPU
Support [1.5362025549031049]
Perunは機密のマルチステークホルダ機械学習のためのフレームワークである。
ハードウェアアクセラレータ(GPUなど)上でMLトレーニングを実行し、セキュリティ保証を提供する。
CIFAR-10と現実世界の医療データセットのMLトレーニング中に、Perunは161倍から1560倍のスピードアップを達成した。
論文 参考訳(メタデータ) (2021-03-31T08:31:07Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
EXEmplesは、比較的少ない入力バイトを摂動することで、機械学習に基づく検出をバイパスすることができる。
我々は、機械学習モデルに対する過去の攻撃を包含し、一般化するだけでなく、3つの新たな攻撃を含む統一フレームワークを開発する。
これらの攻撃はFull DOS、Extended、Shiftと呼ばれ、DOSヘッダをそれぞれ操作し、拡張し、第1セクションの内容を変更することで、敵のペイロードを注入する。
論文 参考訳(メタデータ) (2020-08-17T07:16:57Z) - A Privacy-Preserving Distributed Architecture for
Deep-Learning-as-a-Service [68.84245063902908]
本稿では,ディープラーニング・アズ・ア・サービスのための分散アーキテクチャを提案する。
クラウドベースのマシンとディープラーニングサービスを提供しながら、ユーザの機密データを保存できる。
論文 参考訳(メタデータ) (2020-03-30T15:12:03Z) - CryptoSPN: Privacy-preserving Sum-Product Network Inference [84.88362774693914]
総生産ネットワーク(SPN)のプライバシ保護のためのフレームワークを提案する。
CryptoSPNは、中規模のSPNに対して秒の順序で高効率で正確な推論を行う。
論文 参考訳(メタデータ) (2020-02-03T14:49:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。