論文の概要: TEESlice: Protecting Sensitive Neural Network Models in Trusted Execution Environments When Attackers have Pre-Trained Models
- arxiv url: http://arxiv.org/abs/2411.09945v1
- Date: Fri, 15 Nov 2024 04:52:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:39:29.187247
- Title: TEESlice: Protecting Sensitive Neural Network Models in Trusted Execution Environments When Attackers have Pre-Trained Models
- Title(参考訳): TEESlice: 攻撃者が事前訓練されたモデルを持つ場合の信頼された実行環境における知覚的ニューラルネットワークモデル保護
- Authors: Ding Li, Ziqi Zhang, Mengyu Yao, Yifeng Cai, Yao Guo, Xiangqun Chen,
- Abstract要約: TSDPは、TEE内のプライバシーに敏感な重みを保護し、GPUに不感な重みをオフロードする手法である。
トレーニング戦略の前に新たなパーティションを導入し,プライバシに敏感な重みをモデルの他のコンポーネントと効果的に分離する。
提案手法は, 計算コストを10倍に削減し, 完全なモデル保護を実現できることを示す。
- 参考スコア(独自算出の注目度): 12.253529209143197
- License:
- Abstract: Trusted Execution Environments (TEE) are used to safeguard on-device models. However, directly employing TEEs to secure the entire DNN model is challenging due to the limited computational speed. Utilizing GPU can accelerate DNN's computation speed but commercial widely-available GPUs usually lack security protection. To this end, scholars introduce TSDP, a method that protects privacy-sensitive weights within TEEs and offloads insensitive weights to GPUs. Nevertheless, current methods do not consider the presence of a knowledgeable adversary who can access abundant publicly available pre-trained models and datasets. This paper investigates the security of existing methods against such a knowledgeable adversary and reveals their inability to fulfill their security promises. Consequently, we introduce a novel partition before training strategy, which effectively separates privacy-sensitive weights from other components of the model. Our evaluation demonstrates that our approach can offer full model protection with a computational cost reduced by a factor of 10. In addition to traditional CNN models, we also demonstrate the scalability to large language models. Our approach can compress the private functionalities of the large language model to lightweight slices and achieve the same level of protection as the shielding-whole-model baseline.
- Abstract(参考訳): Trusted Execution Environments (TEE) はデバイス上のモデルを保護するために使用される。
しかし、計算速度の制限により、DNNモデル全体を保護するために直接TEEを採用することは困難である。
GPUを使用すると、DNNの計算速度が加速するが、商用の広く利用可能なGPUは通常、セキュリティ保護を欠いている。
この目的のために、TSDPはTEE内のプライバシーに敏感な重みを保護し、GPUに不感な重みをオフロードする手法である。
しかしながら、現在の手法では、十分に一般に公開されている事前訓練されたモデルやデータセットにアクセス可能な知識のある敵の存在を考慮していない。
本稿では,そのような知識のある相手に対する既存手法のセキュリティについて検討し,それらのセキュリティの約束を果たすことができないことを明らかにする。
その結果、トレーニング戦略の前に新たなパーティションを導入し、プライバシに敏感な重みをモデルの他のコンポーネントと効果的に分離する。
提案手法は, 計算コストを10倍に削減し, 完全なモデル保護を実現できることを示す。
従来のCNNモデルに加えて,大規模言語モデルのスケーラビリティも示す。
提案手法は,大規模言語モデルのプライベート機能を軽量スライスに圧縮し,シールドモデルベースラインと同じレベルの保護を実現する。
関連論文リスト
- A Novel Access Control and Privacy-Enhancing Approach for Models in Edge Computing [0.26107298043931193]
本稿では,エッジコンピューティング環境に適した新しいモデルアクセス制御手法を提案する。
この方法は、画像スタイルをライセンス機構として利用し、モデルの運用フレームワークにスタイル認識を組み込む。
エッジモデルに入力データを制限することにより、攻撃者がモデルへの不正アクセスを阻止するだけでなく、端末デバイス上のデータのプライバシーも強化する。
論文 参考訳(メタデータ) (2024-11-06T11:37:30Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
アドリラルロバスト性は、ニューラルネットワークをエンコードする難しい性質として伝統的に信じられてきた。
データを使わずに敵の堅牢性を実現するために,スケーラブルでモデルに依存しないソリューションを開発した。
論文 参考訳(メタデータ) (2024-07-26T10:49:14Z) - Privacy preserving layer partitioning for Deep Neural Network models [0.21470800327528838]
Trusted Execution Environments (TEEs)は、暗号化、復号化、セキュリティ、整合性チェックなどの追加レイヤによって、大幅なパフォーマンスオーバーヘッドを発生させることができる。
我々はGPUに層分割技術とオフロード計算を導入する。
我々は、訓練された条件付き生成逆数ネットワーク(c-GAN)を用いた入力再構成攻撃の防御におけるアプローチの有効性を示す実験を行った。
論文 参考訳(メタデータ) (2024-04-11T02:39:48Z) - Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
本稿では、プライバシーバックドア攻撃という新たな脆弱性を明らかにします。
被害者がバックドアモデルに微調整を行った場合、トレーニングデータは通常のモデルに微調整された場合よりも大幅に高い速度でリークされる。
我々の発見は、機械学習コミュニティにおける重要なプライバシー上の懸念を浮き彫りにし、オープンソースの事前訓練モデルの使用における安全性プロトコルの再評価を求めている。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - Isolation and Induction: Training Robust Deep Neural Networks against
Model Stealing Attacks [51.51023951695014]
既存のモデル盗難防衛は、被害者の後部確率に偽りの摂動を加え、攻撃者を誤解させる。
本稿では,モデルステルス防衛のための新規かつ効果的なトレーニングフレームワークである分離誘導(InI)を提案する。
モデルの精度を損なうモデル予測に摂動を加えるのとは対照的に、我々はモデルを訓練して、盗むクエリに対して非形式的なアウトプットを生成する。
論文 参考訳(メタデータ) (2023-08-02T05:54:01Z) - Publishing Efficient On-device Models Increases Adversarial
Vulnerability [58.6975494957865]
本稿では,大規模モデルのオンデバイス版を公開する際のセキュリティ上の考慮事項について検討する。
まず、敵がデバイス上のモデルを悪用し、大きなモデルを攻撃しやすくすることを示す。
次に、フルスケールと効率的なモデルとの類似性が増加するにつれて、脆弱性が増加することを示す。
論文 参考訳(メタデータ) (2022-12-28T05:05:58Z) - CANIFE: Crafting Canaries for Empirical Privacy Measurement in Federated
Learning [77.27443885999404]
Federated Learning(FL)は、分散環境で機械学習モデルをトレーニングするための設定である。
本稿では,訓練ラウンドの経験的プライバシを評価するために,強敵による慎重なサンプル作成手法であるCANIFEを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:30:16Z) - Shielding Federated Learning Systems against Inference Attacks with ARM
TrustZone [0.0]
フェデレートラーニング(FL)は、マシンラーニングモデルをトレーニングする上で、個人データをユーザ環境に保持する新たな視点を開放する。
近年、個人データを勾配から流出させる推論攻撃の長いリストは、効果的な保護メカニズムの考案の必要性を強調している。
GradSecは、機械学習モデルのTEEのみに敏感なレイヤを保護できるソリューションです。
論文 参考訳(メタデータ) (2022-08-11T15:53:07Z) - Just Fine-tune Twice: Selective Differential Privacy for Large Language
Models [69.66654761324702]
本稿では,大規模なトランスフォーマーベース言語モデルのためのSDPを実現するための,シンプルで効果的なジャストファイントゥンツースプライバシ機構を提案する。
実験により, カナリア挿入攻撃に対して頑健でありながら, 高い性能が得られた。
論文 参考訳(メタデータ) (2022-04-15T22:36:55Z) - DarkneTZ: Towards Model Privacy at the Edge using Trusted Execution
Environments [37.84943219784536]
我々は、エッジデバイスのTrusted Execution Environment(TEE)を使用して、ディープニューラルネットワーク(DNN)に対する攻撃面を制限するフレームワークであるDarkneTZを紹介する。
我々は、CPU実行時間、メモリ使用量、正確な消費電力を含むDarkneTZの性能を評価する。
結果から,単一のレイヤが隠されている場合でも,信頼性の高いモデルプライバシを提供し,技術MIAの状態を防御することが可能になる。
論文 参考訳(メタデータ) (2020-04-12T21:42:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。