論文の概要: OpenTrench3D: A Photogrammetric 3D Point Cloud Dataset for Semantic Segmentation of Underground Utilities
- arxiv url: http://arxiv.org/abs/2404.07711v1
- Date: Thu, 11 Apr 2024 12:58:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-12 13:59:46.716682
- Title: OpenTrench3D: A Photogrammetric 3D Point Cloud Dataset for Semantic Segmentation of Underground Utilities
- Title(参考訳): OpenTrench3D:地下ユーティリティのセマンティックセグメンテーションのための3Dポイント・クラウド・データセット
- Authors: Lasse H. Hansen, Simon B. Jensen, Mark P. Philipsen, Andreas Møgelmose, Lars Bodum, Thomas B. Moeslund,
- Abstract要約: OpenTrench3Dは、新しくて包括的な3Dセマンティックポイントクラウドデータセットである。
データセットは7つの異なる領域で収集された310点の雲で構成されている。
- 参考スコア(独自算出の注目度): 14.322865270001866
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Identifying and classifying underground utilities is an important task for efficient and effective urban planning and infrastructure maintenance. We present OpenTrench3D, a novel and comprehensive 3D Semantic Segmentation point cloud dataset, designed to advance research and development in underground utility surveying and mapping. OpenTrench3D covers a completely novel domain for public 3D point cloud datasets and is unique in its focus, scope, and cost-effective capturing method. The dataset consists of 310 point clouds collected across 7 distinct areas. These include 5 water utility areas and 2 district heating utility areas. The inclusion of different geographical areas and main utilities (water and district heating utilities) makes OpenTrench3D particularly valuable for inter-domain transfer learning experiments. We provide benchmark results for the dataset using three state-of-the-art semantic segmentation models, PointNeXt, PointVector and PointMetaBase. Benchmarks are conducted by training on data from water areas, fine-tuning on district heating area 1 and evaluating on district heating area 2. The dataset is publicly available. With OpenTrench3D, we seek to foster innovation and progress in the field of 3D semantic segmentation in applications related to detection and documentation of underground utilities as well as in transfer learning methods in general.
- Abstract(参考訳): 地下施設の特定と分類は、効率的な都市計画とインフラ整備のための重要な課題である。
提案するOpenTrench3Dは,新鮮で包括的な3次元セマンティックセマンティック・セマンティック・ポイント・クラウド・データセットである。
OpenTrench3Dは、パブリックな3Dポイントクラウドデータセットのための、まったく新しいドメインをカバーしている。
データセットは7つの異なる領域で収集された310点の雲で構成されている。
これには5つの水道用地域と2つの地区の暖房用地域が含まれる。
異なる地理的領域と主要なユーティリティ(水と地域の暖房ユーティリティ)を含めることで、OpenTrench3Dはドメイン間移動学習実験に特に有用である。
我々は3つの最先端セマンティックセグメンテーションモデル、PointNeXt、PointVector、PointMetaBaseを用いて、データセットのベンチマーク結果を提供する。
ベンチマークは、水域からのデータをトレーニングし、地域暖房エリア1を微調整し、地域暖房エリア2を評価して実施する。
データセットは公開されている。
OpenTrench3Dでは、地下ユーティリティの検出と文書化、および一般的には転送学習の手法に関するアプリケーションにおいて、3Dセマンティックセマンティックセマンティクスの分野におけるイノベーションと進歩の促進を目指しています。
関連論文リスト
- ALSTER: A Local Spatio-Temporal Expert for Online 3D Semantic
Reconstruction [62.599588577671796]
本稿では,RGB-Dフレームのストリームから3次元セマンティックマップを段階的に再構成するオンライン3次元セマンティックセマンティックセマンティクス手法を提案する。
オフラインの手法とは異なり、ロボット工学や混合現実のようなリアルタイムな制約のあるシナリオに直接適用できます。
論文 参考訳(メタデータ) (2023-11-29T20:30:18Z) - Navya3DSeg -- Navya 3D Semantic Segmentation Dataset & split generation
for autonomous vehicles [63.20765930558542]
3Dセマンティックデータは、障害物検出やエゴ-車両の局所化といった中核的な認識タスクに有用である。
そこで我々は,大規模生産段階の運用領域に対応する多様なラベル空間を持つ新しいデータセットであるNavala 3D(Navya3DSeg)を提案する。
ラベルのない23のラベル付きシーケンスと25の補足シーケンスが含まれており、ポイントクラウド上の自己教師付きおよび半教師付きセマンティックセマンティックセグメンテーションベンチマークを探索するために設計された。
論文 参考訳(メタデータ) (2023-02-16T13:41:19Z) - SensatUrban: Learning Semantics from Urban-Scale Photogrammetric Point
Clouds [52.624157840253204]
センサットウルバン(SensatUrban)は、イギリスの3都市から収集された7.6km2の30億点近くからなる、都市規模のUAV測光点クラウドデータセットである。
データセットの各ポイントは、粒度の細かいセマンティックアノテーションでラベル付けされ、その結果、既存の最大のフォトグラムポイントクラウドデータセットの3倍の大きさのデータセットが生成される。
論文 参考訳(メタデータ) (2022-01-12T14:48:11Z) - Efficient Urban-scale Point Clouds Segmentation with BEV Projection [0.0]
ほとんどのディープポイントクラウドモデルは、直接3Dポイントクラウド上で学習を行います。
本稿では,高密度の鳥眼視射影に3次元点雲を移すことを提案する。
論文 参考訳(メタデータ) (2021-09-19T06:49:59Z) - 3D Spatial Recognition without Spatially Labeled 3D [127.6254240158249]
Weakly-supervised framework for Point cloud Recognitionを紹介する。
We show that WyPR can detected and segment objects in point cloud data without access any space labels at training time。
論文 参考訳(メタデータ) (2021-05-13T17:58:07Z) - H3D: Benchmark on Semantic Segmentation of High-Resolution 3D Point
Clouds and textured Meshes from UAV LiDAR and Multi-View-Stereo [4.263987603222371]
本稿では,3つの方法でユニークな3次元データセットを提案する。
ヘシグハイム(ドイツ語: Hessigheim, H3D)は、ドイツの都市。
片手で3次元データ分析の分野での研究を促進するとともに、新しいアプローチの評価とランク付けを目的としている。
論文 参考訳(メタデータ) (2021-02-10T09:33:48Z) - Semantic Segmentation on Swiss3DCities: A Benchmark Study on Aerial
Photogrammetric 3D Pointcloud Dataset [67.44497676652173]
スイスの3つの都市から採取された総面積2.7 km2$の屋外3Dポイントクラウドデータセットを紹介した。
データセットは、ポイントごとのラベルによるセマンティックセグメンテーションのために手動でアノテートされ、高解像度カメラを備えたマルチローターによって取得された画像のフォトグラムを用いて構築される。
論文 参考訳(メタデータ) (2020-12-23T21:48:47Z) - Towards Semantic Segmentation of Urban-Scale 3D Point Clouds: A Dataset,
Benchmarks and Challenges [52.624157840253204]
我々は、30億点近い注釈付きポイントを持つ都市規模の測光点クラウドデータセットを提示する。
私たちのデータセットは、イギリスの3つの都市からなり、都市の景観の約7.6km2をカバーしています。
我々は,データセット上での最先端アルゴリズムの性能を評価し,その結果を包括的に分析する。
論文 参考訳(メタデータ) (2020-09-07T14:47:07Z) - A Nearest Neighbor Network to Extract Digital Terrain Models from 3D
Point Clouds [1.6249267147413524]
本稿では,3Dポイントのクラウド上で動作し,エンド・ツー・エンドのアプローチを用いてシーンの基盤となるDTMを推定するアルゴリズムを提案する。
我々のモデルは近隣情報を学習し、これをポイントワイドでブロックワイドなグローバルな特徴とシームレスに統合する。
論文 参考訳(メタデータ) (2020-05-21T15:54:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。