Harnessing Machine Learning for Discerning AI-Generated Synthetic Images
- URL: http://arxiv.org/abs/2401.07358v2
- Date: Thu, 23 May 2024 19:48:08 GMT
- Title: Harnessing Machine Learning for Discerning AI-Generated Synthetic Images
- Authors: Yuyang Wang, Yizhi Hao, Amando Xu Cong,
- Abstract summary: We employ machine learning techniques to discern between AI-generated and genuine images.
We refine and adapt advanced deep learning architectures like ResNet, VGGNet, and DenseNet.
The experimental results were significant, demonstrating that our optimized deep learning models outperform traditional methods.
- Score: 2.6227376966885476
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the realm of digital media, the advent of AI-generated synthetic images has introduced significant challenges in distinguishing between real and fabricated visual content. These images, often indistinguishable from authentic ones, pose a threat to the credibility of digital media, with potential implications for disinformation and fraud. Our research addresses this challenge by employing machine learning techniques to discern between AI-generated and genuine images. Central to our approach is the CIFAKE dataset, a comprehensive collection of images labeled as "Real" and "Fake". We refine and adapt advanced deep learning architectures like ResNet, VGGNet, and DenseNet, utilizing transfer learning to enhance their precision in identifying synthetic images. We also compare these with a baseline model comprising a vanilla Support Vector Machine (SVM) and a custom Convolutional Neural Network (CNN). The experimental results were significant, demonstrating that our optimized deep learning models outperform traditional methods, with DenseNet achieving an accuracy of 97.74%. Our application study contributes by applying and optimizing these advanced models for synthetic image detection, conducting a comparative analysis using various metrics, and demonstrating their superior capability in identifying AI-generated images over traditional machine learning techniques. This research not only advances the field of digital media integrity but also sets a foundation for future explorations into the ethical and technical dimensions of AI-generated content in digital media.
Related papers
- Development of a Dual-Input Neural Model for Detecting AI-Generated Imagery [0.0]
It is important to develop tools that are able to detect AI-generated images.
This paper proposes a dual-branch neural network architecture that takes both images and their Fourier frequency decomposition as inputs.
Our proposed model achieves an accuracy of 94% on the CIFAKE dataset, which significantly outperforms classic ML methods and CNNs.
arXiv Detail & Related papers (2024-06-19T16:42:04Z) - Alleviating Catastrophic Forgetting in Facial Expression Recognition with Emotion-Centered Models [49.3179290313959]
The proposed method, emotion-centered generative replay (ECgr), tackles this challenge by integrating synthetic images from generative adversarial networks.
ECgr incorporates a quality assurance algorithm to ensure the fidelity of generated images.
The experimental results on four diverse facial expression datasets demonstrate that incorporating images generated by our pseudo-rehearsal method enhances training on the targeted dataset and the source dataset.
arXiv Detail & Related papers (2024-04-18T15:28:34Z) - Generating Synthetic Satellite Imagery With Deep-Learning Text-to-Image Models -- Technical Challenges and Implications for Monitoring and Verification [46.42328086160106]
We explore how synthetic satellite images can be created using conditioning mechanisms.
We evaluate the results based on authenticity and state-of-the-art metrics.
We discuss implications of synthetic satellite imagery in the context of monitoring and verification.
arXiv Detail & Related papers (2024-04-11T14:00:20Z) - Is Synthetic Image Useful for Transfer Learning? An Investigation into Data Generation, Volume, and Utilization [62.157627519792946]
We introduce a novel framework called bridged transfer, which initially employs synthetic images for fine-tuning a pre-trained model to improve its transferability.
We propose dataset style inversion strategy to improve the stylistic alignment between synthetic and real images.
Our proposed methods are evaluated across 10 different datasets and 5 distinct models, demonstrating consistent improvements.
arXiv Detail & Related papers (2024-03-28T22:25:05Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
generative AI has unlocked the potential to create synthetic images that closely resemble real-world photographs.
This paper explores the innovative concept of harnessing these AI-generated images as new data sources.
In contrast to real data, AI-generated data exhibit remarkable advantages, including unmatched abundance and scalability.
arXiv Detail & Related papers (2023-10-03T06:55:19Z) - CIFAKE: Image Classification and Explainable Identification of
AI-Generated Synthetic Images [7.868449549351487]
This article proposes to enhance our ability to recognise AI-generated images through computer vision.
The two sets of data present as a binary classification problem with regard to whether the photograph is real or generated by AI.
This study proposes the use of a Convolutional Neural Network (CNN) to classify the images into two categories; Real or Fake.
arXiv Detail & Related papers (2023-03-24T16:33:06Z) - Attention Mechanism for Contrastive Learning in GAN-based Image-to-Image
Translation [3.90801108629495]
We propose a GAN-based model that is capable of generating high-quality images across different domains.
We leverage Contrastive Learning to train the model in a self-supervised way using image data acquired in the real world using real sensors and simulated images from 3D games.
arXiv Detail & Related papers (2023-02-23T14:23:23Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
We study whether and how synthetic images generated from state-of-the-art text-to-image generation models can be used for image recognition tasks.
We showcase the powerfulness and shortcomings of synthetic data from existing generative models, and propose strategies for better applying synthetic data for recognition tasks.
arXiv Detail & Related papers (2022-10-14T06:54:24Z) - SIR: Self-supervised Image Rectification via Seeing the Same Scene from
Multiple Different Lenses [82.56853587380168]
We propose a novel self-supervised image rectification (SIR) method based on an important insight that the rectified results of distorted images of the same scene from different lens should be the same.
We leverage a differentiable warping module to generate the rectified images and re-distorted images from the distortion parameters.
Our method achieves comparable or even better performance than the supervised baseline method and representative state-of-the-art methods.
arXiv Detail & Related papers (2020-11-30T08:23:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.