論文の概要: NeuroNCAP: Photorealistic Closed-loop Safety Testing for Autonomous Driving
- arxiv url: http://arxiv.org/abs/2404.07762v3
- Date: Mon, 22 Apr 2024 07:48:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 20:47:39.261875
- Title: NeuroNCAP: Photorealistic Closed-loop Safety Testing for Autonomous Driving
- Title(参考訳): NeuroNCAP: 自動運転のための光リアルクローズドループ安全試験
- Authors: William Ljungbergh, Adam Tonderski, Joakim Johnander, Holger Caesar, Kalle Åström, Michael Felsberg, Christoffer Petersson,
- Abstract要約: 自律運転ソフトウェアシステムをテストするための多用途NeRFシミュレータを提案する。
シミュレータは、実世界の駆動センサデータのシーケンスから学習する。
我々はシミュレータを用いて、Euro NCAPにインスパイアされた安全クリティカルなシナリオに対するADモデルの応答をテストする。
- 参考スコア(独自算出の注目度): 19.709153559084093
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a versatile NeRF-based simulator for testing autonomous driving (AD) software systems, designed with a focus on sensor-realistic closed-loop evaluation and the creation of safety-critical scenarios. The simulator learns from sequences of real-world driving sensor data and enables reconfigurations and renderings of new, unseen scenarios. In this work, we use our simulator to test the responses of AD models to safety-critical scenarios inspired by the European New Car Assessment Programme (Euro NCAP). Our evaluation reveals that, while state-of-the-art end-to-end planners excel in nominal driving scenarios in an open-loop setting, they exhibit critical flaws when navigating our safety-critical scenarios in a closed-loop setting. This highlights the need for advancements in the safety and real-world usability of end-to-end planners. By publicly releasing our simulator and scenarios as an easy-to-run evaluation suite, we invite the research community to explore, refine, and validate their AD models in controlled, yet highly configurable and challenging sensor-realistic environments. Code and instructions can be found at https://github.com/atonderski/neuro-ncap
- Abstract(参考訳): 我々は,センサリアルなクローズループ評価と安全クリティカルシナリオの作成に焦点をあてた,自律走行(AD)ソフトウェアシステムをテストする汎用的なNeRFベースのシミュレータを提案する。
シミュレータは実世界の駆動センサーデータのシーケンスから学習し、新しい、目に見えないシナリオの再構成とレンダリングを可能にする。
本研究では,欧州新車評価プログラム(Euro NCAP)に触発された安全クリティカルシナリオに対するADモデルの応答をシミュレータを用いて検証する。
我々の評価では、最先端のエンド・ツー・エンドのプランナーは、オープンループ設定で名目上の運転シナリオに優れているが、クローズドループ設定で安全クリティカルなシナリオをナビゲートする際には、重大な欠陥が現れる。
これは、エンド・ツー・エンド・プランナーの安全性と現実のユーザビリティの向上の必要性を強調している。
シミュレータとシナリオを簡単に実行可能な評価スイートとして公開することにより、研究コミュニティにADモデルを制御されながら、高度に構成可能で、困難なセンサー現実的な環境を探索し、洗練し、検証するよう呼びかけます。
コードと命令はhttps://github.com/atonderski/neuro-ncapで確認できる。
関連論文リスト
- ReGentS: Real-World Safety-Critical Driving Scenario Generation Made Stable [88.08120417169971]
機械学習に基づく自律運転システムは、現実世界のデータでは稀な安全クリティカルなシナリオで課題に直面していることが多い。
この研究は、軌道最適化によって複雑な現実世界の通常のシナリオを変更することによって、安全クリティカルな運転シナリオを生成することを検討する。
提案手法は、頑健なプランナーの訓練には役に立たない非現実的な発散軌道と避けられない衝突シナリオに対処する。
論文 参考訳(メタデータ) (2024-09-12T08:26:33Z) - PAFOT: A Position-Based Approach for Finding Optimal Tests of Autonomous Vehicles [4.243926243206826]
本稿では位置に基づくアプローチテストフレームワークであるPAFOTを提案する。
PAFOTは、自動走行システムの安全違反を明らかにするために、敵の運転シナリオを生成する。
PAFOTはADSをクラッシュさせる安全クリティカルなシナリオを効果的に生成し、短いシミュレーション時間で衝突を見つけることができることを示す実験である。
論文 参考訳(メタデータ) (2024-05-06T10:04:40Z) - UniSim: A Neural Closed-Loop Sensor Simulator [76.79818601389992]
センサ搭載車両によって記録された1つのログをキャプチャする、ニューラルネットワークシミュレータUniSimを提示する。
UniSimは、静的バックグラウンドと動的アクターの両方を再構築するために、ニューラルネットワーク機能グリッドを構築する。
動的オブジェクトの学習可能な事前情報を組み込んで、畳み込みネットワークを利用して未確認領域を完成させる。
論文 参考訳(メタデータ) (2023-08-03T17:56:06Z) - PEM: Perception Error Model for Virtual Testing of Autonomous Vehicles [20.300846259643137]
この記事では、知覚エラーモデル(PEM)を定義します。
PEMは仮想シミュレーションコンポーネントであり、知覚誤差がAV安全性に与える影響を分析することができる。
我々は、カメラ、LiDAR、カメラ-LiDARのセットアップを評価することにより、PEMベースの仮想テストの有用性を実証する。
論文 参考訳(メタデータ) (2023-02-23T10:54:36Z) - VISTA 2.0: An Open, Data-driven Simulator for Multimodal Sensing and
Policy Learning for Autonomous Vehicles [131.2240621036954]
VISTAはオープンソースのデータ駆動シミュレータで、複数のタイプのセンサーを自律走行車に組み込む。
高忠実で実世界のデータセットを使用して、VISTAはRGBカメラ、3D LiDAR、イベントベースのカメラを表現し、シミュレートする。
センサタイプ毎に知覚制御ポリシーをトレーニングし,テストする能力を示し,フルスケールの自律走行車への展開を通じて,このアプローチのパワーを示す。
論文 参考訳(メタデータ) (2021-11-23T18:58:10Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
最先端運転シミュレータを用いて,テストシナリオを特徴付け,生成するための効率的なメカニズムを提案する。
次世代シミュレーション(NGSIM)プロジェクトにおける実運転データの特徴付けに本手法を用いる。
事故回避の複雑さに基づいてメトリクスを定義してシナリオをランク付けし、事故発生の可能性を最小限に抑えるための洞察を提供します。
論文 参考訳(メタデータ) (2021-03-12T17:00:23Z) - AdvSim: Generating Safety-Critical Scenarios for Self-Driving Vehicles [76.46575807165729]
我々は,任意のLiDARベースの自律システムに対して,安全クリティカルなシナリオを生成するための,敵対的フレームワークであるAdvSimを提案する。
センサデータから直接シミュレートすることにより、完全な自律スタックに対して安全クリティカルな敵シナリオを得る。
論文 参考訳(メタデータ) (2021-01-16T23:23:12Z) - Testing the Safety of Self-driving Vehicles by Simulating Perception and
Prediction [88.0416857308144]
センサシミュレーションは高価であり,領域ギャップが大きいため,センサシミュレーションに代わる方法を提案する。
我々は、自動運転車の知覚と予測システムの出力を直接シミュレートし、現実的な動き計画テストを可能にする。
論文 参考訳(メタデータ) (2020-08-13T17:20:02Z) - Towards Automated Safety Coverage and Testing for Autonomous Vehicles
with Reinforcement Learning [0.3683202928838613]
検証は、システムが日々の運転で遭遇する可能性のあるシナリオや状況において、自動運転車システムをテストに投入する。
本稿では,AVソフトウェア実装における障害事例と予期せぬ交通状況を生成するために強化学習(RL)を提案する。
論文 参考訳(メタデータ) (2020-05-22T19:00:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。