論文の概要: Discourse-Aware In-Context Learning for Temporal Expression Normalization
- arxiv url: http://arxiv.org/abs/2404.07775v1
- Date: Thu, 11 Apr 2024 14:13:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-12 13:40:16.793208
- Title: Discourse-Aware In-Context Learning for Temporal Expression Normalization
- Title(参考訳): 時間的表現正規化のための談話型インコンテキスト学習
- Authors: Akash Kumar Gautam, Lukas Lange, Jannik Strötgen,
- Abstract要約: 本研究では、TE正規化のためのプロプライエタリおよびオープンソースの大規模言語モデル(LLM)の実現可能性について検討する。
ウィンドウベースのプロンプト設計アプローチを用いることで、モデルを訓練することなくLLM知識を活用しながら、文間でTE正規化を行うことができる。
この課題のために設計されたモデルに対する競争結果を示す実験を行った。
- 参考スコア(独自算出の注目度): 7.621550020607368
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Temporal expression (TE) normalization is a well-studied problem. However, the predominately used rule-based systems are highly restricted to specific settings, and upcoming machine learning approaches suffer from a lack of labeled data. In this work, we explore the feasibility of proprietary and open-source large language models (LLMs) for TE normalization using in-context learning to inject task, document, and example information into the model. We explore various sample selection strategies to retrieve the most relevant set of examples. By using a window-based prompt design approach, we can perform TE normalization across sentences, while leveraging the LLM knowledge without training the model. Our experiments show competitive results to models designed for this task. In particular, our method achieves large performance improvements for non-standard settings by dynamically including relevant examples during inference.
- Abstract(参考訳): 時間的表現(TE)正規化はよく研究されている問題である。
しかし、主に使用されるルールベースのシステムは特定の設定に非常に制限されており、次の機械学習アプローチはラベル付きデータの欠如に悩まされる。
本研究では,TE正規化のためのプロプライエタリかつオープンソースな大規模言語モデル (LLM) の実現可能性について検討する。
サンプル選択戦略を探索し、最も関連性の高いサンプル群を検索する。
ウィンドウベースのプロンプト設計アプローチを用いることで、モデルを訓練することなくLLM知識を活用しながら、文間でTE正規化を行うことができる。
我々の実験は、このタスクのために設計されたモデルに対して、競争結果を示す。
特に,提案手法は,推論中の関連事例を動的に含むことにより,非標準設定に対する大幅な性能向上を実現する。
関連論文リスト
- Tuning-Free Personalized Alignment via Trial-Error-Explain In-Context Learning [74.56097953187994]
本稿では,テキスト生成タスクのための言語モデルをパーソナライズするチューニング不要な手法であるTrial-Error-Explain In-Context Learning(TICL)を提案する。
TICLは、試行錯誤説明プロセスを通じて、文脈内学習プロンプトを反復的に拡張し、モデル生成陰性サンプルと説明を追加する。
TICLは従来の最先端技術に対して最大91.5%を達成し、パーソナライズされたアライメントタスクのための競争的なチューニング不要のベースラインを上回っている。
論文 参考訳(メタデータ) (2025-02-13T05:20:21Z) - On the Loss of Context-awareness in General Instruction Fine-tuning [101.03941308894191]
教師付き微調整後の文脈認識の喪失について検討した。
性能低下は,会話指導の微調整中に学んだ異なる役割に対する偏見と関連していることがわかった。
一般命令微調整データセットから文脈依存例を識別する指標を提案する。
論文 参考訳(メタデータ) (2024-11-05T00:16:01Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
コンテキスト is Key" (CiK) は、数値データを多種多様なテキストコンテキストと組み合わせた予測ベンチマークである。
我々は,統計モデル,時系列基礎モデル,LLMに基づく予測モデルなど,さまざまなアプローチを評価する。
提案手法は,提案するベンチマークにおいて,他の試験手法よりも優れる簡易かつ効果的なLCMプロンプト法である。
論文 参考訳(メタデータ) (2024-10-24T17:56:08Z) - Context-aware Prompt Tuning: Advancing In-Context Learning with Adversarial Methods [69.36397993451742]
In this work introduced Context-aware Prompt Tuning (CPT) - ICL, PT, and adversarial attack。
入力および出力フォーマットのユニークな構造を考慮して、特定のコンテキストトークンを変更する。
敵の攻撃にインスパイアされた我々は、損失を最大化するのではなく、最小化に焦点をあてて、コンテキストに存在するラベルに基づいて入力を調整する。
論文 参考訳(メタデータ) (2024-10-22T17:45:47Z) - Experimental Design for Active Transductive Inference in Large Language Models [18.2671641610825]
適応的なプロンプト設計にアクティブラーニングを使用し、それをアクティブ・インコンテクスト・プロンプト・デザイン(AIPD)と呼ぶ。
テストセットの性能を最適化するために、トレーニングセットから少数ショット例を適応的に選択し、LCMプロンプトを設計する。
GOとSALの2つのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-04-12T23:27:46Z) - Generative Context-aware Fine-tuning of Self-supervised Speech Models [54.389711404209415]
生成型大規模言語モデル(LLM)生成コンテキスト情報の利用について検討する。
自己教師型音声モデルの微調整中に生成した情報を抽出する手法を提案する。
本稿では,SLUE と Libri-light のベンチマークを用いて,自動音声認識,名前付きエンティティ認識,感情分析を行う手法を提案する。
論文 参考訳(メタデータ) (2023-12-15T15:46:02Z) - RetICL: Sequential Retrieval of In-Context Examples with Reinforcement Learning [53.52699766206808]
In-Context Learning (RetICL) のための検索式を提案する。
RetICLは数学用語の問題解決と科学的質問応答のタスクに基づいて評価し,一貫した性能や一致,学習可能なベースラインを示す。
論文 参考訳(メタデータ) (2023-05-23T20:15:56Z) - Compositional Exemplars for In-context Learning [21.961094715261133]
大規模な事前学習言語モデル(LM)は、印象的なインコンテキスト学習(ICL)能力を示している。
本稿では,CEIL (Compositional Exemplars for In-context Learning) を提案する。
我々は、感情分析、パラフレーズ検出、自然言語推論、コモンセンス推論、オープンドメイン質問応答、コード生成、意味解析を含む7つの異なるNLPタスクから、CEILを12の分類および生成データセットで検証する。
論文 参考訳(メタデータ) (2023-02-11T14:02:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。